• Title/Summary/Keyword: Power Amplitude

Search Result 1,053, Processing Time 0.027 seconds

A Fast and Robust Grid Synchronization Algorithm of a Three-phase Converters under Unbalanced and Distorted Utility Voltages

  • Kim, Kwang-Seob;Hyun, Dong-Seok;Kim, Rae-Yong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1101-1107
    • /
    • 2017
  • In this paper, a robust and fast grid synchronization method of a three-phase power converter is proposed. The amplitude and phase information of grid voltages are essential for power converters to be properly connected into the utility. The phase-lock-loop in synchronous reference frame has been widely adopted for the three-phase converter system since it shows a satisfactory performance under balanced grid voltages. However, power converters often operate under abnormal grid conditions, i.e. unbalanced by grid faults and frequency variations, and thus a proper active and reactive power control cannot be guaranteed. The proposed method adopts a second order generalized integrator in synchronous reference frame to detect positive sequence components under unbalanced grid voltages. The proposed method has a fast and robust performance due to its higher gain and frequency adaptive capability. Simulation and experimental results show the verification of the proposed synchronization algorithm and the effectiveness to detect positive sequence voltage.

Control Method of NPC Inverter for the Continuous Operation under One Phase Fault Condition (3상 NPC 인버터의 한상 고장시 연속적인 운전을 위한 제어기법)

  • Park Geon-Tae;Kim Tae-Jin;Kang Dae-Wook;Hyun Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • The topology of NPC inverter coupled with the large number of devices used increases the probability of device failure. It's necessary to develop an optimal remedial strategy which can be used to continue the application when fault occurs. The fault tolerance is obtained by the use of the proposed method. The proposed method utilizes that the one phase load with the failed power device could be connected to the center-tap of the DC-link capacitor in order to dc-link voltage with balance and the sinusoidal phase current with constant amplitude under the single power device fault condition. The strategy described in this paper is expected to provide an economic alternative to more expensive redundancy techniques.

Effect on the Transport Current and Quench Resistance of the HTS Wire with Normal-Superconducting Junction During the Fault Current Applying (사고전류 인가 시 초전도선재의 상전도-초전도 접합부가 통전전류와 ?치저항에 미치는 영향)

  • Hong, Gong-Hyun;Du, Ho-Ik;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.625-629
    • /
    • 2015
  • The second-generation HTS wire its YBCO coated conductor is widely used in the superconducting power apparatus. The YBCO coated conductor uses the normal-superconducting junction to increase the transport capacity of superconducting power apparatus when it is applied. The normal-superconducting junction can be a cause of reducing the stability of the superconducting power apparatus when a fault current is applied. Thus, in this study we have conducted the effect analysing normal-superconducting junction for the fault current using transport current and quench resistance. From the experimental results when a fault current is applied, the effect on the normal-superconducting junction is reduced the larger the amplitude of the fault current and is helpful to maintain the thermal stability of the HTS wire.

Improved Gate Drive Circuit for High Power IGBTs with a Novel Overvoltage Protection Scheme (과전압 제한 기능을 갖는 새로운 IGBT 게이트 구동회로)

  • Lee, Hwang-Geol;Lee, Yo-Han;Suh, Bum-Seok;Hyun, Dong-Seok;Lee, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.346-349
    • /
    • 1996
  • In application of high power IGBT PWM inverters, the treatable power range is considerably limited due to the overvoltage caused by the stray inductance components within the power circuit. This paper proposes a new gate drive circuit for IGBTs which can actively suppress the overvoltage across the driven IGBT at turn-off and the overvoltage across the opposite IGBT at turn-on while preserving the most simple and reliable power circuit. The turn-off driving scheme has adaptive feature to the amplitude of collector current, so that the overvoltage is limited much effectively at the larger collector current. The turn-on scheme is to decrease the rising rate of the collector current by increasing input capacitance during turn-on transient when the gate-emitter voltage is greater than threshold voltage. The experimental results under various normal and fault conditions prove the effectiveness of the proposed circuit.

  • PDF

Torque-Angle-Based Direct Torque Control for Interior Permanent-Magnet Synchronous Motor Drivers in Electric Vehicles

  • Qiu, Xin;Huang, Wenxin;Bu, Feifei
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.964-974
    • /
    • 2013
  • A modified direct torque control (DTC) method based on torque angle is proposed for interior permanent-magnet synchronous motor (IPMSM) drivers used in electric vehicles (EVs). Given the close relationship between torque and torque angle, proper voltage vectors are selected by the proposed DTC method to change the torque angle rapidly and regulate the torque quickly. The amplitude and angle of the voltage vectors are determined by the torque loop and stator flux-linkage loop, respectively, with the help of the position of the stator flux linkage. Furthermore, to satisfy the torque performance request of EVs, the nonlinear dead-time of the invertor caused by parasitic capacitances is considered and compensated to improve steady torque performance. The stable operation region of the IPMSM DTC driver for voltage and current limits is investigated for reliability. The experimental results prove that the proposed DTC has good torque performance with a brief control structure.

Analysis on Achievable Data Rate of Asymmetric 2PAM for NOMA

  • Chung, Kyuhyuk
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.34-41
    • /
    • 2020
  • Nowadays, the advanced smart convergences of the artificial intelligence (AI) and the internet of things (IoT) have been more and more important, in the fifth generation (5G) and beyond 5G (B5G) mobile communication. In 5G and B5G mobile networks, non-orthogonal multiple access (NOMA) has been extensively investigated as one of the most promising multiple access (MA) technologies. In this paper, we investigate the achievable data rate for the asymmetric binary pulse amplitude modulation (2PAM), in non-orthogonal multiple access (NOMA). First, we derive the closed-form expression for the achievable data rate of the asymmetric 2PAM NOMA. Then it is shown that the achievable data rate of the asymmetric 2PAM NOMA reduces for the stronger channel user over the entire range of power allocation, whereas the achievable data rate of the asymmetric 2PAM NOMA increases for the weaker channel user improves over the power allocation range less than 50%. We also show that the sum rate of the asymmetric 2PAM NOMA is larger than that of the conventional standard 2PAM NOMA, over the power allocation range larger than 25%. In result, the asymmetric 2PAM could be a promising modulation scheme for NOMA of 5G systems, with the proper power allocation.

Characteristics of Power Spectrum according to Variation of Passenger Number and Vehicle Speed (둔턱 진행 차량의 승객수와 속도에 따른 파워스펙트럼 특성분석)

  • Lee, Hyuk;Kim, Jong-Do;Yoon, Moon-chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.41-48
    • /
    • 2022
  • Vehicle vibration was introduced in the time and frequency domains using fast Fourier transform (FFT) analysis. In particular, a vibration mode analysis and characteristics of the frequency response function (FRF) in a sport utility vehicle (SUV) passing over a bump barrier at different speeds was performed systematically. The response behavior of the theoretical acceleration was obtained using a numerical method applied to the forced vibration model. The amplitude and frequency of the external force on the vehicle cause various power spectra with individual intrinsic system frequencies. In this regard, several modes of power spectra were acquired from the spectra and are discussed in this paper. The proposed technique can be used for monitoring the acceleration in a vehicle passing over a bump barrier. To acquire acceleration signals, various experimental runs were performed using the SUV. These acceleration signals were then used to acquire the FRF and to conduct mode analysis. The vehicle characteristics according to the vehicle condition were analyzed using FRF. In addition, the vehicle structural system and bump passing frequencies were discriminated based on their power spectra and other FRF spectra.

Performance assessment of pitch-type wave energy converter in irregular wave conditions on the basis of numerical investigation

  • Poguluri, Sunny Kumar;Kim, Dongeun;Bae, Yoon Hyeok
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.23-38
    • /
    • 2022
  • In this paper, a pitch-type wave energy converter (WEC-rotor) is investigated in irregular wave conditions for the real sea testing at the west coast of Jeju Island, South Korea. The present research builds on and extends our previous work on regular waves to irregular waves. The hydrodynamic characteristics of the WEC-rotor are assessed by establishing a quasi-two-dimensional numerical wave tank using computational fluid dynamics by solving the Reynolds-averaged Navier-Stokes equation. The numerical solution is validated with physical experiments, and the comparison shows good agreement. Furthermore, the hydrodynamic performance of the WEC-rotor is explored by investigating the effect of the power take-off (PTO) loading torque by one-way and two-way systems, the wave height, the wave period, operational and high sea wave conditions. Irrespective of the sea wave conditions, the absorbed power is quadratic in nature with the one-way and two-way PTO loading systems. The power absorption increases with the wave height, and the increment is rapid and mild in the two-way and one-way PTO loading torques, respectively. The pitch response amplitude operator increases as the wave period increases until the maximum value and then decreases. For a fixed PTO loading, the power and efficiency are higher in the two-way PTO loading system than in the one-way PTO loading system at different wave periods.

Implementation of Externally Controllable Miniaturized Capsule for the Stimulation of Intestine (체외 제어 가능한 소화관 자극용 초소형 캡슐 구현)

  • 박종철;박희준;이정우;송병섭;이승하;조진호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2923-2926
    • /
    • 2003
  • In this paper, a swallowable miniaturized capsule, which applicable for electrical stimulation of digestive organ to improve the motion of intestine in research purpose, is proposed and implemented. The developed capsule can be controlled for the behavior of the power on/off, amplitude and pulse rate for the patient stimulus, by internally equipped with miniaturized RF receiver that linked by the command of external transmitter The experimental result of the implemented miniaturized capsule in the animal intestine show the ability of effective control for the stimulus parameters.

  • PDF

Electrodeless Lamp Converter of PID Control use Amplitude Modulation Method (진폭변조방식을 이용한 무전극 램프용 컨버터의 PID제어)

  • Kwon, Myung-Il;Jang, Do-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.206-208
    • /
    • 2007
  • 무전극 램프의 조광 장치에서 필요한 컨버터의 필요조건은 입력 전압을 승 강압 문제뿐만 아니라 역률 보상 문제도 해결하기 위해서는 입력전류가 연속적인 방식만을 사용해야 한다는 제약 조건이 있다. 이 논문에서는 무전극 조광 장치에서 사용 되어 질 수 있는 컨버터의 구조와 시스템을 제어하기 위해 가장 일반적으로 사용되고 있는 PID제어기를 사용하여 조광함을 목적을 한다.

  • PDF