• 제목/요약/키워드: Power Amplifiers

Search Result 399, Processing Time 0.032 seconds

A Novel Wideband and Compact Photonic Bandgap Structure using Double-Plane Superposition (양면 중첩기법을 이용하는 새로운 광대역의 소형 포토닉 밴드갭 구조)

  • 김진양;방현국
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.413-422
    • /
    • 2002
  • A novel photonic bandgap(PBG) structure is proposed and measured for wide bandgap and compact circuit applications. The proposed structure realizes the ultra-wideband bandgap(2-octave) characteristics by superposing two different PBG structures into a coupled double-plane configuration. A low pass filter fabricated using 3-period of the PBG cells shows 2-octave 10 ㏈ stopband from 4.3 to 16.2 ㎓ and 0.2 ㏈ insertion loss in the passband. Moreover, we confirmed that 44∼70 % size reduction can be achieved using the proposed PBG structures. We expect this novel double-plane PBG structure is widely used for compact and wideband circuit applications, such as compact high-efficiency power amplifiers using harmonic tuning techniques.

  • PDF

A New Active Phase Shifter using Vetor Sum Method (Vector Sum 방법을 이용한 새로운 구조의 능동 위상천이기)

  • 김성재;명노훈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.575-581
    • /
    • 2000
  • In this paper, a new active phase shifter is proposed using a vector sum method, and a unique digital phase control method of the circuit is suggested. The proposed scheme was designed and implemented using a Wilkinson power combiner/divider, a branch line 3 dB quadrature hybrid coupler and variable gain amplifiers (VGAs) using gate FETs(DGFETs). Furthermore, it was also shown that the proposed scheme is more efficient and works properly with the digital phase control method.

  • PDF

Dimensioning a Retro-Directive Array for Communications via a Stratospheric Platform

  • Thornton, John
    • ETRI Journal
    • /
    • v.24 no.2
    • /
    • pp.153-160
    • /
    • 2002
  • High Altitude Platforms-craft maintaining stations in the stratosphere at altitudes of around 20 km-have been proposed as a means of supporting wireless telecommunications. They could exploit the best aspects of both terrestrial and satellite systems and support efficient frequency re-use plans. For solar powered platforms the power available for the downlink amplifiers may be minimal, particularly at night and/or higher latitudes. This paper discusses a novel type of link based on a modulated retro-directive transponder carried by the HAP. Relying chiefly on the ground station infrastructure, this would substantially reduce power consumption on the platform. We investigate the efficiency of the transponder aperture as a function of its area by developing general models for losses in the transmission lines which interconnect antenna pairs in the retro-directive array.

  • PDF

Development of a New Active Phase Shifter

  • Kim, S.J.;N.H. Myung
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1063-1066
    • /
    • 2000
  • ln this paper, a new active phase shifter is proposed using a vector sum method, and it is shown that the proposed phase shifter is more efficient than the others in size, power, number of circuits, and gain. Also a unique digital phase control method of the circuit is suggested. The proposed scheme was designed and implemented using a Wilkinson power combiner/divider, a branch line 3dB quadrature hybrid coupler and variable gain amplifiers (VGAs) using dual gate FETs (DGFETs). Furthermore, it is also shown that the proposed scheme is more efficient and works properly with the digital phase control method.

  • PDF

A New Method for Resistive Leakage Current Measurement (새로운 저항성 누전전류 측정 방법)

  • Ham, Seung-Jin;Hahn, Song-Yop;Koh, Chang-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1397-1404
    • /
    • 2007
  • It is important to measure the resistive component separately from the total leakage current at power distribution line. It is because electric disasters such as electric shock and fire are caused mainly by the resistive component of the total leakage current. In this paper, a new theory for measuring the resistive component separately from the total leakage current is suggested, and is embodied to an actual circuit using operational amplifiers, analog switch and R-C low pass filter. Through experiments for various cases containing both the resistive and capacitive leakage currents, the suggested algorithm is confirmed to be able to measure the resistive leakage current within 4.1% of error even when the capacitive leakage current is much bigger than the resistive one. The suggested method is expected to lower the total cost because it can be realized using simple and cheap devices, and implies the measuring time can be possibly reduced because the resistive leakage current is computed exactly from the signals during only a half period of power voltage.

Extraction of Optimal Operation Condition of QAM Envelope Tracking System using Combined Cost Function of Bandwidth and Efficiency

  • Kim, Changwook;Park, Youngcheol
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1019-1024
    • /
    • 2018
  • In this paper, we suggest a combined cost function to find out the optimal operation of an envelope tracking system, and evaluated its performance with Quadrature Amplitude Modulation (QAM) waveform, with which envelope tracking coefficients for the peak drain efficiency and the bandwidth of power amplifiers are determined. Based on the classical envelope tracking theory, the operation of the supply modulator, which is a key part of the envelope tracking process, is modeled and analyzed mathematically. Then characteristics of the modulator by setting envelope shaping function as a cubic polynomial and sweeping the coefficients of this function was analyzed. By sweeping the coefficients, efficiency and bandwidth at each condition with 64-QAM signal was used to obtain optimal point of the supply modulator. Compared to the conventional shaping functions, the optimized function showed the bandwidth reduction by 12.7 percent point while the efficiency was maintained.

A Study on Millimeter Wave Power Amplifiers Using Spatial Combining (공간 결합을 이용한 밀리미터파 전력 증폭기에 관한 연구)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.77-82
    • /
    • 2017
  • As frequencies increase to the millimeter wave bands the cross sections of wave guides become smaller than a few millimeters, which cause sapatial problems in realization of spatial combining power amplifiers. In this paper we intented to overcome the problem by widening the width of wave guides using horn antenna principles. We designed a widened rectangular wave guide for using in spatial combining power amplifier in 60GHz ISM band(57-64GHz), and we installed Antipodal transition in the widened wave guide, and then we characterized it as a spatial combining power amplifier. For the compatibility of WR15 standard wave guide, we widened the width of WR15 to 7mm using principle of H-plane sectoral horn antenna and then installed 3 slots of back to back Antipodal transition. The designed spatial combining power amplifier showed good characteristics of return loss less than -22.4dB and insertion loss less than 0.53dB. However, as widening the width of the wave guide, additional modes such as $TE_{20}$, $TE_{30}$ in addition to $TE_{10}$ were accurred in the bandwidth of WR15, which restricted the bandwidth and widening of the width of the wave guide.

A Study on Spatial Combining power Amplifiers for Backhaul of 5G cellular systems (5세대 이동통신 백홀용 공간 결합 전력 증폭기에 관한 연구)

  • Ki, Hyeon-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.21-26
    • /
    • 2016
  • In this paper we proposed a new structure of spatial combining power amplifier working in 60GHz global unlicensed band(56-64GHz) for the backhaul in the 5 generation mobile systems. The proposed structure is suitable to realize an antipodal finline transition in millimeter wave band, in which the size of cross section of waveguide becomes about a few mm ${\times}$ a few mm, due to its compact structure of the transition and shows effective heat sinking characteristics because its ground plane can contact to the body metal. However, the HFSS simulation results showed the return loss improvement by 1.27dB and the same insertion loss of -1.65dB compared with the conventional structure, which said nevertheless the advantages, there was no deterioration in the performance.

Establishment of the Electromagnetic Shielding Effectiveness Measurement System (전자파차폐효과 측정시스템의 구현)

  • 정연춘;강태원;정낙삼
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.3
    • /
    • pp.45-53
    • /
    • 1993
  • The shielding effectiveness of materials is determined by measuring the ratio of the incident electromagnetic power to that which passes through the material under test. The measurement system is constructed using several test fixtures, tracking generator, spectrum analyzer, step attenuator, RF switches, and amplifiers, etc.. The automation of measurements is completed using a personal computer. Especially, incident power, reflected power, and transmitted power are measured with only one spectrum analyzer using a dual directional coupler and RF switches. Therefore the system is to be used in design of shielding materials, as well as shielding effectiveness measurements. This system has dynamic range of more than 120 dB in the frequency range of 10 MHz to 1 GHz, and it can be used to measure shielding effectiveness of composite materials.

  • PDF

A Fast RSSI using Novel Logarithmic Gain Amplifiers for Wireless Communication

  • Lee, Sung-Ho;Song, Yong-Hoon;Nam, Sang-Wook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.1
    • /
    • pp.22-28
    • /
    • 2009
  • This paper presents a fast received signal strength indicator (RSSI) circuit for wireless communication application. The proposed circuit is developed using power detectors and an analog-to-digital converter to achieve a fast settling time. The power detector is consisted of a novel logarithmic variable gain amplifier (VGA), a peak detector, and a comparator in a closed loop. The VGA achieved a wide logarithmic gain range in a closed loop form for stable operation. For the peak detector, a fast settling time and small ripple are obtained using the orthogonal characteristics of quadrature signals. In $0.18-{\mu}m$ CMOS process, the RSSI value settles down in $20{\mu}s$ with power consumption of 20 mW, and the maximum ripple of the RSSI is 30 mV. The proposed RSSI circuit is fabricated with a personal handy-phone system transceiver. The active area is $0.8{\times}0.2\;mm^2$.