• Title/Summary/Keyword: Powder technology

Search Result 4,750, Processing Time 0.031 seconds

Optimization of Metal Powder Particle Size Distribution for Powder Bed Fusion Process via Simulation (금속 Powder Bed Fusion 적층제조 기술의 분말 입도 최적화를 위한 시뮬레이션)

  • Lee, Hwaseon;Kim, Dae-Kyeom;Kim, Young Il;Nam, Jieun;Son, Yong;Kim, Taek-Soo;Lee, Bin
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.44-51
    • /
    • 2020
  • Powder characteristics, such as density, size, shape, thermal properties, and surface area, are of significant importance in the powder bed fusion (PBF) process. The powder required is exclusive for an efficient PBF process. In this study, the particle size distribution suitable for the powder bed fusion process was derived by modeling the PBF product using simulation software (GeoDict). The modeling was carried out by layering sintered powder with a large particle size distribution, with 50 ㎛ being the largest particle size. The results of the simulation showed that the porosity decreased when the mean particle size of the powder was reduced or the standard deviation increased. The particle size distribution of prepared titanium powder by the atomization process was also studied. This study is expected to offer direction for studies related to powder production for additive manufacturing.

Guava (Psidium guajava L.) Powder as an Antioxidant Dietary Fibre in Sheep Meat Nuggets

  • Verma, Arun K.;Rajkumar, V.;Banerjee, Rituparna;Biswas, S.;Das, Arun K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.6
    • /
    • pp.886-895
    • /
    • 2013
  • This study was conducted to explore the antioxidant potential and functional value of guava (Psidium guajava L.) powder in muscle foods. Guava powder was used as a source of antioxidant dietary fibre in sheep meat nuggets at two different levels i.e., 0.5% (Treatment I) and 1.0% (Treatment II) and its effect was evaluated against control. Guava powder is rich in dietary fibre (43.21%), phenolics (44.04 mg GAE/g) and possesses good radical scavenging activity as well as reducing power. Incorporation of guava powder resulted in significant decrease (p<0.05) in pH of emulsion and nuggets, emulsion stability, cooking yield and moisture content of nuggets while ash and moisture content of emulsion were increased. Total phenolics, total dietary fibre (TDF) and ash content significantly increased (p<0.05) in nuggets with added guava powder. Product redness value was significantly improved (p<0.05) due to guava powder. Textural properties did not differ significantly except, springiness and shear force values. Guava powder was found to retard lipid peroxidation of cooked sheep meat nuggets as measured by TBARS number during refrigerated storage. Guava powder did not affect sensory characteristics of the products and can be used as source of antioxidant dietary fibre in meat foods.

Fabrication of Ag doped Hydroxyapatite and its Antimicrobial Effects with the Particle Size

  • Oh, Kyung-Sik;Kim, Kyung-Ja;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.8 no.3
    • /
    • pp.192-196
    • /
    • 2001
  • Ag doped Hydroxyapatite powder in nano-scale was successfully synthesized either by co-precipitation or by ion exchange route. The fabricated powder was successfully dispersed through freeze drying due to the prevention of secondary particles. The antimicrobial effects of nano-HAp against E.coli was superior to micron ones not only in its strength but also in duration.

  • PDF

The Influence of Hi-flux Powders Characteristics on the Performance of Magnetic Powder Cores

  • Zhao, Tong Chun;Ma, Hong Qiu;Ding, Fu Chang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.451-452
    • /
    • 2006
  • The influence of Hi-flux powders characteristics on the performance of magnetic powder cores was studied. It was found that different cooling rate and nozzle configuration could change the shape and microstructure of powders. Smooth surface and spherical shape of powders were beneficial to improve DC bias performance and reduce core losses of magnetic powder core.

  • PDF

Comparative Study on the Quality of Sintered Zirconia Block Fabricated by Using Domestic Powder and Global-Brand Powder (국산 지르코니아 분말 소결체 품질의 글로벌 제품과의 비교 연구)

  • Kim, Yong-In;Lee, Seung-Mi;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2015
  • Sintering behavior of 3%yttria-stabilized zirconia was comparatively studied using a spray-dried powder produced by a domestic and global company. Quality of the sintered block was analysed in terms of relative density, shrinkage rate, grain growth, hardness, and fracture toughness. Relative density, shrinkage rate, and hardness value of the finally sintered block was similar between domestic and global zirconia powder, respectively. But, flexural strength of the domestic powder specimen was about 70% of the sintered block produced by using a global powder. The poor sintering quality of the domestic powder was discussed in relation with compressibility of the spray-dried granule-type powder and the amount of monoclinic phase in the as-received powder.

Investigation of Influence of Pulse-periodical Laser Radiation Power on Stability of Liquid-metal Contacts between Powder Particles during Selective Laser Sintering

  • Beljavin, K.E.;Minko, D.V.;Bykov, R.P.;Kuznechik, O.O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.518-519
    • /
    • 2006
  • A connection between pulse-periodical laser radiation power and stability of liquid-metal contacts between powder particles during selective laser sintering (SLS) is determined based on analysis solving the problem of stability of liquid column in the gravity and capillary forces field. On the grounds of obtained relationships the optimization of pulse-periodical laser radiation power and SLS-process duration is realized, that allows to produce voluminous powder porous materials with pre-determined physical and mechanical properties and surface geometry. Results of metallographic investigations of powder porous materials of titanium powder produced with technological regimes calculated by means of obtained relationships are given in the work

  • PDF

Analysis of Densification Behavior of Magnesium Powders in Extrusion using the Critical Relative Density Model (임계상대밀도모델을 이용한 마그네슘분말의 압출공정 치밀화 거동)

  • Yoon, Seung-Chae;Chae, Hong-Jun;Kim, Taek-Soo;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.16 no.1
    • /
    • pp.50-55
    • /
    • 2009
  • Numerical simulations of the powder extrusion need an appropriate pressure-dependent constitutive model for densification modeling of the magnesium powders. The present research investigated the effect of representative powder yield function of the critical relative density model. We could obtain reasonable physical properties of pure magnesium powders using cold isostatic pressing. The proposed densification model was implemented into the finite element code. The finite element analysis was applied to simulation of powder extrusion of pure magnesium powder in order to investigate the densification and processing load at room temperature.

Densification Mechanism of Warm Compaction for Iron-based Powder Materials

  • Qu, Shengguan;Li, Yuanyuan;Xia, Wei;Chen, Weiping
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.201-202
    • /
    • 2006
  • An apparatus measuring changes of various forces directly and continuously was developed by a way of direct touch between powders and transmitting force component, which can be used to study forces state of powders during warm compaction. Using the apparatus, warm compaction processes of iron-based powder materials containing different lubricants at different temperatures were studied. Results show that densification of the iron-based powder materials can be divided into four stages, in which powder movement changes from robustness to weakness, while its degree of plastic deformation changes from weakness to robustness.

  • PDF

Effect of Powder Size of Mg-Zn-Y Alloy on the Consolidation

  • Kim, Taek-Soo;Chae, H.J.;Lee, J.K.;Jung, H.G.;Kim, Y.D.;Bae, J.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1266-1267
    • /
    • 2006
  • [ $MgZn_{4.3}Y_{0.7}$ ] alloy powders were prepared using an industrial scale gas atomizer, followed by warm extrusion. The powders were almost spherical in shape. The microstructure of powders as atomized and bars as extruded was examined as a function of initial powder size distribution using Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS) and X-ray Diffractometer (XRD). The grain sizes were decreased with extruding as well as decreasing the initial powder sizes. Both the ultimate strength and elongation were enhanced as the initial powder sizes were decreased.

  • PDF

Microstructure and Bonding Strength of Tungsten Coating Deposited on Copper by Plasma Spraying

  • Song, Shu-Xiang;Zhou, Zhang-Jian;Du, Juan;Zhong, Zhi-Hong;Ge, Chang-Chun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.511-512
    • /
    • 2006
  • Tungsten coatings with different interlayers onto the oxygen-free copper substrates were fabricated by atmosphere plasma spraying. The effects of different interlayers of NiCrAl, NiAl and W/Cu on bonding strength were studied. SEM, EDS and XRD were used to investigate the photographs and compositions of these coatings. The tungsten coatings with different initial particle sizes resulted in different microstructures. Oxidation was not detected in the tungsten coating, but in the interlayer, it was found by both XRD and EDS. The tungsten coating deposited directly onto the copper substrate presented higher bonding strength than those with different interlayers.

  • PDF