• Title/Summary/Keyword: Powder reaction

Search Result 1,635, Processing Time 0.038 seconds

Recovery of Copper Powder form MoO3 Leaching Solution Using Cementation Reaction System (MoO3 침출공정 폐액으로부터 치환반응 시스템을 이용한 구리 분말 회수에 대한 연구)

  • Kim, Geon-Hong;Hong, Hyun-Seon;Jung, Hang-Chul
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.405-411
    • /
    • 2012
  • Recovery of copper powder from copper chloride solution used in $MoO_3$ leaching process was carried out using a cementation method. Cementation is a simple and economical process, necessitating less energy compared with other recovery methods. Cementation utilizes significant difference in standard reduction potential between copper and iron under standard condition. In the present research, Cementation process variables of temperature, time, and added amount of iron scraps were optimized by using design of experiment method and individual effects on yield and efficiency of copper powder recovery were investigated using bench-scale cementation reaction system. Copper powders thus obtained from cementation process were further characterized using various analytical tools such as XRF, SEM-EDS and laser diffraction and scattering methods. Cementation process necessitated further purification of recovered copper powders and centrifugal separation method was employed, which successfully yielded copper powders of more than 99.65% purity and average $1{\mu}m$ in size.

Fabrication of the ultrafine ZnO powder through glycothermal process (Glycothermal 공정에 의한 미립 ZnO 분말의 제조)

  • Dong-Sik Bae;Kyong-Sop Han;Yong-Kap Park;Seung-Beom Cho;Sang -Heul Choi
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.567-572
    • /
    • 1997
  • The ZnO powder was prepared under glycothermal conditions by precipitation from metal nitrates with aqueous potassium hydroxide. The fine powder was obtained at temperatures as low as 225 to $275^{\circ}C$, The microstructure and phase of the powder were studied by SEM and XRD. The properties of the ZnO powder were studied as a function of various parameters (reaction temperature, reaction time, solid loading, etc). The average particle size of the ZnO increased with increasing reaction temperature. After glycothermal treatment at $225^{\circ}C$ for 8 h, the average particle size of the ZnO powder was about 150 nm and the particle size distribution was narrow.

  • PDF

Synthesis of $WS_2$ Solid Lubricant and Its Application to Ball Bearing ($WS_2$고체윤활제의 합성 및 구름베어링 적용)

  • 신동우;윤대현;최인혁;김경도;정진수;정용선
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.77-82
    • /
    • 1999
  • The processing conditions fur the synthesis of platelet W $S_2$ lubricant powder through a solid-gas reaction were optimized. The mixture of tungsten and sulfur powders were sealed in a vacuum of 10$^{-6}$ torr, prior to heat-treating at 85$0^{\circ}C$ fur 8 days. The reaction product showed a well-developed platelet W $S_2$ powder with an average size of 3.8 ${\mu}{\textrm}{m}$. The TGA/DTA analysis of the synthesized W $S_2$ powder was performed up to 120$0^{\circ}C$ at a rate of 1$0^{\circ}C$/min in flowing air (100 ${\mu}{\textrm}{m}$/min) atmosphere. The weight loss was about 6% up to 120$0^{\circ}C$ compared to the original weight. A rapid weight loss of about 5% occurred in the temperature range of 44$0^{\circ}C$ to 66$0^{\circ}C$ and an exothermic peak observed due to the transition of W $S_2$ to W $O_3$. The synthesized W $S_2$powder was coated on the commercial deep grooved ball bearing (No. 6203) to examine the effect of W $S_2$, coating layer on the noise and endurance of the ball bearing. The level of noise obtained from W $S_2$, coated-ball bearing (56 ㏈) was higher. than the value (32 ㏈) occurred in the case of greece lubrication. The endurance of the ball-bearing assembled after the coating of W $S_2$ powder onto each part increased 50 times compared to the non-coated ball-bearing..

Synthesis of Fine Copper Powders from CuO-H2O Slurry by Wet-reduction Method (액상환원법에 의한 CuO-H2O 슬러리로부터 미세 구리분말의 제조)

  • Ahn Jong-Gwan;Kim Dong-Jin;Lee Ik-Kyu;Lee Jaeryeung;Huanzhen Liang
    • Journal of Powder Materials
    • /
    • v.12 no.3
    • /
    • pp.192-200
    • /
    • 2005
  • Ultrafine copper powder was prepared from $CuO-H_2O$ slurry with hydrazine, a reductant, under $70^{\circ}C$. The influence of various reaction parameters such as temperature, reaction time, molar ratio of $N_2H_4$, PvP and NaOH to Cu in aqueous solution had been studied on the morphology and powder phase of Cu powders obtained. The production ratio of Cu from CuO was increased with the ratio of $N_2H_4/Cu$ and the temperature. When the ratio of $N_2H_4/Cu$ was higher than 2.5 and the temperature was higher than $60^{\circ}C$, CuO was completely reduced into Cu within 40 min. The crystalline size of Cu obtained became fine as the temperature increase, whereas the aggregation degree of particles was increased with the reaction time. The morphology of Cu powder depended on that of the precursor of CuO and processing conditions. The average particle size was about $0.5{\mu}m$.

Preparation of Alumina and Amorphous Silica from Clay Minerals (점토광물로부터 알루미나 및 비정질 실리카 제조에 관한 연구)

  • 박희찬;조원제;강효경;손명모
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.81-90
    • /
    • 1989
  • High purity alumina and amorphous silica were prepared from Ha-dong kaolin by means of appliance of sulfuric acid. The effect of sulfuric acid concentration, reaction temperature and reaction time on the formation of aluminum sulfate was investigated. The precipitation conditions ofaluminum sulfate from the sulfuric acid solution with ethanol and ammonium hydroxide were deteremined. In the optimum condition, the conversion of aluminum oxide in kaolin to aluminum oxide powder was 85.0 percent. Alumina powder was prepared by calcination of the precipitates, and its purity was 99.0 percent.

  • PDF

A study on the synthesis of fine nickel hydroxide crystalline powder using the taylor fluid flow

  • Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.268-273
    • /
    • 2017
  • In this study, nickel hydroxide crystalline powders were synthesized by continuous reaction in the taylor fluid flow using nickel chloride, nickel sulphate and sodium hydroxide as raw materials and compared with those prepared by a conventional batch type reaction. The crystallinity of nickel hydroxide prepared by the Taylor fluid flow reaction was higher than that of nickel hydroxide obtained by batch reaction. The particle size of nickel hydroxide decreased about 2.5 to 3.6 times, and the specific surface area was increased.

Syntheses of SiC and $SiC-Si_3N_4$ Powder from Jecheon Quartz (제천규석으로부터 SiC 및 $SiC-Si_3N_4$계 분말 합성)

  • 이홍림;배철훈;문준화
    • Journal of the Korean Ceramic Society
    • /
    • v.23 no.1
    • /
    • pp.67-73
    • /
    • 1986
  • SiC and $SiC-Si_3N_4$ powder were synthesized via the carbiding and carbiding-nitriding reaction of Jecheon quartz respectively using graphite as a reducing agent. $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ composite was obtained by the carbiding-nitriding reaction of Jecheon quartz-graphite mixture at 1, 35$0^{\circ}C$ in $H_2$ atmosphere. $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ composite was obtained by the carbidint-nitriding reaction of Jecheon quartz-graphite mixture at 1, 35$0^{\circ}C$ in $N_2-H_2$ atmosphere. The ratio of $\beta$-SiC+($\alpha$+$\beta$)-$Si_3N_4$ content in a produced composite could be controlled by adjusting the reaction time and gaseous mixture.

  • PDF

Synthesis of TiC-Ni Based Cermet Powders and Microstructures of Sintered Compacts Prepared by Reaction Milling (반응밀링법으로 제조한 TiC-NirP 서멧분말제조 및 소결성형체의 미세조직)

  • 최철진
    • Journal of Powder Materials
    • /
    • v.6 no.2
    • /
    • pp.139-144
    • /
    • 1999
  • The pure Ti, Ni and carbon powders were reaction milled to synthesize the TiC-Ni based cermet powders with ultrafine microstructures. After milling, the ultrafine TiC or amorphous Ti-Ni phase was obtained, respectively, according to the milling condition. The effects of milling variables on the synthesizing behavior of the powders were investigated in detail. The sintered TiC-Ni based cermet of the reaction milled powders consisted of very fine TiC of 0.2~1.5$\mu$m, as compared with that of a commercial cermet of 3~5$\mu$m. This demonstrates the potenial of reaction milling as an effective processing route for the preparation of cermet materials.

  • PDF