• 제목/요약/키워드: Powder form

검색결과 797건 처리시간 0.027초

김스낵 제조시 도라지 첨가량에 따른 반죽액의 품질 특성 (Quality Characteristics of Dough Liquid according to the Addition Ratio of Doraji in Seaweed Snack Manufacturing)

  • 최미애;김선화
    • 한국조리학회지
    • /
    • 제24권3호
    • /
    • pp.196-203
    • /
    • 2018
  • This study was examined the quality characteristics of dough liquid according to the additional ratio of Doraji in seaweed snack manufacturing. Firstly, the results of Doraji type (dry & powder) were as follows: Carbohydrates 77.57~79.29, crude protein 9.10-9.25, crude fat 0.96~1.33 and calories 355~366 kcal, pH 5.42~5.45, sugar $3.53{\sim}3.96^{\circ}brix$, color 33.82~44.25 (L), 2.27~3.52 (B) and total free amino acids 2,200~2,699 mg/100 g. Total polyphenol contents had dry extracts 1,931.18 mg% and powder extract 1,382.43 mg%, DPPH and ABTs radical scavenging activities tended to increase with higher treatment concentration. Next, the results showed that dough liquid for seaweed snack manufacture which was added Doraji were as follows: Color became deep poppy red with increased addition of Doraji. The texture of adhesiveness, cohesiveness, chewiness, and brittleness tended to decrease with addition of Doraji. The springness showed the opposite tendency. Accordingly, these results suggest that 20% of dry Doraji extract is a proper proportion so that it can be added to the rice dough liquid to produce form Doraji (dry and powder) containing seaweed snacks.

TEOS와 카올린으로부터 제조한 $\beta$-Sialon의 기계적 성질 (Mechanical Properties of Beta-Sialon Ceramics Prepared from TEOS and Kaolin)

  • 임헌진;이홍림
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.637-644
    • /
    • 1989
  • Beta-sialon powder(Z=1) was synthesized by the simultaeous reduction and nitridation of the mixed powders of Hadong kaolin and silica. Silicon hydroxide was prepared from Si-alkoxide by a hydrolysis method and amorphous silica was obtained from the calcination of the prepared silicon hydroxide. Hadong kaolin was mixed with both the silicon hydroxide and amorphous silica, respectively. The average particle size was 4${\mu}{\textrm}{m}$ and the morphology of particle was rod-like and equiaxed in the case of beta-sialon powder prepared form Hadong kaolin and silicon hydroxide(COMPOSITION A), whereas the average particle size was 3${\mu}{\textrm}{m}$ and the morphology of particle was equiaxed in the case of beta-sialon powder prepared from Hadong kaolin and amorphous silica(COMPOSITION B). The synthesized beta-sialon powders were hot-pressed at 175$0^{\circ}C$ for 2 hours under 30 MPa in a nitrogen atmosphere after YAG composition(8wt%) was added to these powders as a sintering agent. The hot-pressed specimens were annealed a 140$0^{\circ}C$ for 4 hours in a nitrogen atmosphere. The mechanical properties of sintered bodies were investigated in terms of M.O.R., fracture toughness and hardness. The measured values are as follows. COMPOSITION A : M.O.R. 508MPa, KIC 3.5MN/m3/2, hardness 13.6GPa. COMPOSITION B : M.O.R. 653MPa, KIC 5.4MN/m3/2, hardness 13.5GPa.

  • PDF

In-situ Synthesis of Cu-TiB2 Nanocomposite by MA/SPS

  • Kwon, Young-Soon;Kim, Ji-Soon;Kim, Hwan-Tae;Moon, Jin-Soo;D.V Dudina;O.I. Lomovsky
    • 한국분말재료학회지
    • /
    • 제10권6호
    • /
    • pp.443-447
    • /
    • 2003
  • Nano-sized $TiB_2$ was in situ synthesized in copper matrix through self-propagating high temperature synthesis (SHS) with high-energy ball milled Ti-B-Cu elemental mixtures as powder precursors. The size of $TiB_2$ particles in the product of SHS reaction decreases with time of preliminary mechanical treatment ranging from 1 in untreated mixture to 0.1 in mixtures milled for 3 min. Subsequent mechanical treatment of the product of SHS reaction allowed the $TiB_2$ particles to be reduced down to 30-50 nm. Microstructural change of $TiB_2$-Cu nanocomposite during spark plasma sintering (SPS) was also investigated. Under simultaneous action of pressure, temperature and electric current, titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton.

Kinetic Spray 공정을 이용한 벌크형 탄탈륨 소재의 제조 및 미세조직/물성 (Fabrication and Microstructure/Properties of Bulk-type Tantalum Material by a Kinetic Spray Process)

  • 이지혜;김지원;이기안
    • 한국분말재료학회지
    • /
    • 제23권1호
    • /
    • pp.8-14
    • /
    • 2016
  • A bulk-type Ta material is fabricated using the kinetic spray process and its microstructure and physical properties are investigated. Ta powder with an angular size in the range $9-37{\mu}m$ (purity 99.95%) is sprayed on a Cu plate to form a coating layer. As a result, ~7 mm-sized bulk-type high-density material capable of being used as a sputter material is fabricated. In order to assess the physical properties of the thick coating layer at different locations, the coating material is observed at three different locations (surface, center, and interface). Furthermore, a vacuum heat treatment is applied to the coating material to reduce the variation of physical properties at different locations of the coating material and improve the density. OM, Vickers hardness test, SEM, XRD, and EBSD are implemented for analyzing the microstructure and physical properties. The fabricated Ta coating material produces porosity of 0.11~0.12%, hardness of 311~327 Hv, and minor variations at different locations. In addition, a decrease in the porosity and hardness is observed at different locations upon heat treatment.

Fine-Pitch Solder on Pad Process for Microbump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Choi, Kwang-Seong;Eom, Yong-Sung
    • ETRI Journal
    • /
    • 제35권6호
    • /
    • pp.1152-1155
    • /
    • 2013
  • A cost-effective and simple solder on pad (SoP) process is proposed for a fine-pitch microbump interconnection. A novel solder bump maker (SBM) material is applied to form a 60-${\mu}m$ pitch SoP. SBM, which is composed of ternary Sn3.0Ag0.5Cu (SAC305) solder powder and a polymer resin, is a paste material used to perform a fine-pitch SoP through a screen printing method. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder, the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. Test vehicles with a daisy chain pattern are fabricated to develop the fine-pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si chip has 6,724 bumps with a 45-${\mu}m$ diameter and 60-${\mu}m$ pitch. The chip is flip chip bonded with a Si substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of the underfill. The optimized bonding process is validated through an electrical characterization of the daisy chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and microbump interconnection using a screen printing process.

비타민 K2(Menaquinone-7) 함유 청국장 분말의 섭취가 폐경기 여성의 뼈건강 개선에 미치는 효과 (Effect of Vitamin K2 (Menaquinone-7) in Cheongukjang Powder on Bone Health Circulation in Postmenopausal Women)

  • 방선옥;김금숙;정민홍
    • 한국식품영양학회지
    • /
    • 제29권6호
    • /
    • pp.978-984
    • /
    • 2016
  • Osteoporosis is a disease that often occurs in postmenopausal women. The purpose of this study was to examine the positive effects of Cheongukjang powder containing menaquinone-7 (MK-7) on bone health circulation in postmenopausal women. Fifty-six postmenopausal women were recruited into a randomised double-blind placebo-controlled trial. The participants were randomly assigned into two groups. For 12 weeks, one group received $800{\mu}g$ MK-7 in the form of Cheongukjang packs (CMK-7), and the other group received the same amount of identical-looking placebo packs containing barley meal for 12 weeks. Femoral bone mineral density (BMD), bone-specific alkaline phosphatase (ALP), deoxypyridinoline (DPD), osteocalcin (OSC), serum Ca, and serum P were measured at baseline (0 weeks) and 12 weeks. After 12 weeks in the CMK-7 group, it was found that BMD, serum Ca, and serum P had increased above the baseline (p<0.0001, p=0.0028, p<0.0001), whereas bone-specific ALP, DPD, and OSC had decreased below the baseline (p=0.0003, p<0.0001, p<0.0001). Therefore, MK-7 taken as Cheongukjang is expected to prevent osteoporosis in postmenopausal women.

다공성 세라믹의 발포에 관한 연구 (A Study on Bloating of Porous Ceramic)

  • 김귀식;김현관;정지현
    • 동력기계공학회지
    • /
    • 제17권2호
    • /
    • pp.108-113
    • /
    • 2013
  • In this study, lightweight aggregate was made from basalt stone powder sludge. Clay and glass powder were respectively added from 0 to 20 wt% and from 0 to 100 wt%. The glass powder helped to form glassy phase which trapped generating gas in the materials. $CaCO_3$ helping bloating process was added from 0 to 10 wt%. It was possible to produce lightweight aggregate at range from $1150^{\circ}C$ to $1200^{\circ}C$. The specimen was heated in furnace at 1100, 1150 and $1200^{\circ}C$ for 15 min, respectively, to sinter aggregates. Chemical composition of materials were determined, and characteristics were analyzed, including specific gravity, water absorption. Lightweight aggregate which was heated at $1200^{\circ}C$ had specific gravity of $0.53g/cm^3$, water absorption of 3.08%, and this value satisfied KS L 8551 standard.

수소저장합금의 마이크로캡슐화 (Microencapsulation of Hydrogen Storage Alloys)

  • 김대룡;김용철;금동욱
    • 한국수소및신에너지학회논문집
    • /
    • 제1권1호
    • /
    • pp.31-39
    • /
    • 1989
  • Although it has been well known that many metal hydrides are promising to use for hydrogen storage and other applications, some difficulties still remain. Metal hydrides, particularly in powder form, have very poor thermal conductivity. The hydrogen storage alloys degrade intrinsically or extrinsically during repeated hydriding and dehydriding. Elimination of these problems is very important in the practical applications. In order to prevent degradation and to improve the thermal conductivity, the hydrogen storage characteristics of rare-earth type alloy encapsulated with Cu or Ni by means of chemical plating have been investigated. No changes has occured in hydrogen absorption capacity and equilibrium pressure even though the alloy powder is microencapsulated. The first hydrogen absorption rate of the alloy encapsulated increased considerably comparing to uncapsulated sample. In the case of encapsulating the fine powder ($>10{\mu}m$) and subsequent compacting by $8ton/cm^2$, shape of compact is maintained regardless of hydriding and dehydriding. The degree of degradation of the alloy caused by impurity gas of CO or $O_2$ was decreased prominently by encapsulation.

  • PDF

Al-Pb계 합금분말의 성형 및 소결 특성에 관한 연구 (A Study on Characteristics of Al-Pb Strips and Its Sintering Behavior)

  • 문종태;이영근;이용호;조성석
    • 한국주조공학회지
    • /
    • 제10권5호
    • /
    • pp.435-443
    • /
    • 1990
  • By using the centrifugal atomization, which is one of the rapid solidification processes, Al-5,10wt%Pb alloys which are monotectic alloys were melted at 150K over two liquid phase line in the phase diagram. The melted alloy was poured on the rotating disk, being made into atomized powders, and then the solidified microstructure and morphology of the powder were investigated. This study converted the produced powders into strips by strained powder rolling. According to sintering temperature, the microstructure and hardness were investigated. The solidified structure of the powders were almost cellular dendritic structure. Pb particles ($2.0-3.0{\mu}m$) were fairl distributed in the Al matrix. Powder shapes were irregular. Rolling property and the compacting was good, respectively, because of increasing mechanical interlocking and surface area in the small size powders. With increasing temperature, the boundarys of powders were in porous form due to the diffusion. Pb particles which were surrounding the pores were inverse-segregated at the surface of the powders. With increasing of sintering temperature, the hardness of the powders and the strips decreased. In particular rolling-strip, the hardness abruptly decreased due to the release of work-hardening.

  • PDF

Effect of Inflow Rate of Raw Material Solution on the Fabrication of Nano-Sized Cobalt Oxide Powder by Spray Pyrolysis Process

  • Kim, Dong Hee;Yu, Jae Keun
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.662-669
    • /
    • 2016
  • In order to identify changes in the nature of the particles due to changes in the inflow rate of the raw material solution, the present study was intended to prepare nano-sized cobalt oxide ($Co_3O_4$) powder with an average particle size of 50 nm or less by spray pyrolysis reaction using raw cobalt chloride solution. As the inflow rate of the raw material solution increased, droplets formed by the pyrolysis reaction showed more divided form and the particle size distribution was more uneven. As the inflow rate of the solution increased from 2 to 10 ml/min, the average particle size of the formed particles increased from about 25 nm to 40 nm, while the average particle size did not show significant changes when the inflow rate increased from 10 to 50 ml/min. XRD analysis showed that the intensity of the XRD peaks increased remarkably when the inflow rate of the solution increased from 2 to 10 ml/min. On the other hand, the peak intensity stayed almost constant when the inflow rate increased from 10 to 50 ml/min. With the increase in the inflow rate from 2 to 10 ml/min, the specific surface area of the particles decreased by approximately 20 %. On the contrary, the specific surface area stayed constant when the inflow rate increased from 10 to 50 ml/min.