• Title/Summary/Keyword: Powder form

Search Result 789, Processing Time 0.028 seconds

Fatty Acid Composition of Adipose Tissues in Obese Mice and SD Rats Fed with Isaria sinclairii Powder

  • Ahn, Mi-Young;Seo, Yun-Jung;Ji, Sang-Deok;Han, Jea-Woong;Hwang, Jae-Sam;Yun, Eun-Young
    • Toxicological Research
    • /
    • v.26 no.3
    • /
    • pp.185-192
    • /
    • 2010
  • Isaria sinclairii (Cicada Dongchunghacho) was studied as a potential crude natural food in powdered form. The role of tissue fatty acids in relation to the anti-obesity effects of I. sinclairii (IS) was examined by feeding the powder to SD rats ad libitum at 0, 1.25, 2.5, 5 and 10% (calculated about 8 g/kg) of the feed for a period of 3 months and 6 months. The fatty acid composition profile as indicated GC-MS, showed significantly slight dose-dependent increases in the levels of unsaturated fatty acids, particularly, arachidonic acid (C20: 4n6), oleic acid, linoleic acid, eicosadienoic acid, eicosapentaenoic acid (EPA) (C20: 5) concentration in the the ad libitum IS-fed groups compared to the control group in SD abdominal fat over 6 month period. Over viewing of the SD and Ob mice treated Isaria sinclairii powder; there were increases in the single (mono) unsaturated fatty acids ratio but decreases in polyunsaturated fatty acid. In IS-fed groups in proportion to the treatment period, this Dongchunghacho also induced an increase in the level of same result of unsaturated fatty acid in C57BL/6 obese (ob/ob) mice over a 6-month period treatment compared to those given 10% dry mulberry leaf powder (ML) or silkworm powder mixed with the standard diet.

Evaluation of Genotoxicity and 28-day Oral Dose Toxicity on Freeze-dried Powder of Tenebrio molitor Larvae (Yellow Mealworm)

  • Han, So-Ri;Yun, Eun-Young;Kim, Ji-Young;Hwang, Jae Sam;Jeong, Eun Ju;Moon, Kyoung-Sik
    • Toxicological Research
    • /
    • v.30 no.2
    • /
    • pp.121-130
    • /
    • 2014
  • The larval form of Tenebrio molitor (T. molitor) has been eaten in many countries and provides benefits as a new food source of protein for humans. However, no information exists regarding its safety for humans. The objective of the present study was to evaluate the genotoxicity and repeated dose oral toxicity of the freeze-dried powder of T. molitor larvae. The genotoxic potential was evaluated by a standard battery testing: bacterial reverse mutation test, in vitro chromosome aberration test, and in vivo micronucleus test. To assess the repeated dose toxicity, the powder was administered once daily by oral gavage to Sprague-Dawley (SD) rats at dose levels of 0, 300, 1000 and 3000 mg/kg/day for 28 days. The parameters which were applied to the study were mortality, clinical signs, body and organ weights, food consumption, ophthalmology, urinalysis, hematology, serum chemistry, gross findings and histopathologic examination. The freezedried powder of T. molitor larvae was not mutagenic or clastogenic based on results of in vitro and in vivo genotoxicity assays. Furthermore, no treatment-related changes or findings were observed in any parameters in rats after 28 days oral administration. In conclusion, the freeze-dried powder of T. molitor larvae was considered to be non-genotoxic and the NOAEL (No Observed Adverse Effect Level) was determined to be 3000 mg/kg/day in both sexes of SD rats under our experimental conditions.

Fabrication of Porous MoSi2 material for Heating Element through Self-propagating High Temperature Synthesis Process (연소합성법에 의한 발열성 다공질 MoSi2계 재료의 제조)

  • Song, In-Hyuck;Yun, Jung-Yeul;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.62-68
    • /
    • 2004
  • In this study, SHS process has been employed to fabricate porous $MoSi_2$ material with electric-resistive heating capability through the control of pore size. The preform for SHS reaction was consisted of molybdenum powder with different sizes and silicon powder with different contained quantity. The size of the $MoSi_2$ particles thus formed was determined by the generated heat of combustion, not by the size of molybdenum powder. However, the pore size of $MoSi_2$ composite was proportional to the particle size of molybdenum powder. that is the coarser the molybdenum powder used, the larget the formed pore size. Based on these results, the porous $MoSi_2$ composite could be fabricated with a desired pore size. By orienting the porous molybdenum disilicide-based material in the form of pore size gradient, porous materials used for filters with improved dirt-holding capacity can be manufactured.

Processing Optimization and Antioxidant Activity of Chiffon Cake Prepared with Tomato Powder (토마토 분말 첨가 시폰 케이크의 제조조건 최적화 및 품질 특성)

  • Paik, Jaeeun;Kim, Soojeong;An, Hyunae;Joo, Nami
    • Journal of the Korean Dietetic Association
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • The purpose of this study was to determine the optimal mixing condition of tomato powder and sugar for producing chiffon cake. The experiment was designed according to the central composite design of response surface, which yielded ten experimental points, including two replicates. Physiochemical and sensory properties were measured, and theses values applied to mechanical models. A canonical form and perturbation plot showed the influence of each ingredient on the final product mixture. The results of the physiochemical analysis of each sample showed significant differences in sweetness (P<0.01), color L (P<0.001), color a (P<0.001), color b (P<0.05), hardness (P<0.05), and cohesiveness (P<0.01). The sensory measurements were significantly different in color (P<0.05), appearance (P<0.05), flavor (P<0.05), sweetness (P<0.01), moistness (P<0.05), and overall acceptability (P<0.05). The optimal formulation, calculated using the numerical and graphical method, was determined to be 59.27 g tomato powder and 285.66 g sugar. The sensory evaluation showed significantly higher preferences in the color, flavor, appearance, texture, sweetness, tenderness, moistness and overall quality of the optimized chiffon cake compared to the controlled chiffon cake. The optimized chiffon cake also showed a high antioxidative activity compared to the controlled chiffon cake. Our results show that chiffon cake prepared with tomato powder enhances sensory characteristics and antioxidative activity.

Quality Characteristics of Muffins Containing Chungkukjang Powder (청국장 가루를 첨가한 머핀의 품질 특성)

  • Seo, Eun-Ok;Ko, Seong-Hye;Kim, Kwang-Oh
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.4
    • /
    • pp.635-640
    • /
    • 2009
  • In this study, muffins were made with the addition of 0%, 3%, 6% and 9% of Chungkukjang powder and, the quality characteristics, such as volume, height, appearance, chromaticity and moisture contents, were measured using SEM (Scanning Electronic Microscope) measurement, texture tests and sensory tests. In the regards to volume, as the added amount of added Chungkukjang increased, the volume also increased. There was no significant difference in the height and moisture content of the muffins at the different Chungkukjang powder concentrations. Using SEM, it was shown that as the amount of added Chungkukjang increased, the gluten content decreased, which in turn caused the formation of thick cell membranes and rough pores and reduced gluten composition capacity. Luminosity L value in Chungkukjang muffin decreased as the amount of added Chungkukjang powder increased. There was significant difference in the red chromaticity a value and yellow chromaticity b value among the samples (p<0.05). The results of the texture test showed that the hardness of the Chungkukjang muffin decreased as the amount of added Chungkukjang increased. In addition, as the amount of added Chungkukjang increased, the adhesiveness decreased. There was no significant difference in springing, chewiness and gumminess among the samples. There was a significant difference in the cohesiveness among all other samples in cohesiveness (p<0.05). The results of the sensory test showed that the wave form of the Chungkukjang muffin decreased as the amount of added Chungkukjang increased. The pore of the muffin increased as the amount of added Chungkukjang increased. The color quality of the muffin decreased as the amount of added Chungkukjang increased. In terms of overall acceptability, 6% Chungkukjang was shown to result in the highest preference level.

  • PDF

The Effect of Liquid Medium on Silicon Grinding and Oxidation during Wet Grinding Process (습식분쇄공정에서 액상매체가 실리콘 분쇄 및 산화특성에 미치는 영향)

  • Kwon, Woo Teck;Kim, Soo Ryong;Kim, Young Hee;Lee, Yoon Joo;Shin, Dong Geun;Won, Ji Yeon;Oh, Sea Cheon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • The influence of a liquid medium duringa wet-milling process in the grinding and oxidation of silicon powder was investigated. Distilled water, dehydrated ethanol and diethylene glycol were used as the liquid media. The applied grinding times were 0.5, 3, and 12 h. Ground silicon powder samples were characterized by means of aparticle size analysis, scanning electron microscopy(SEM), x-ray powder diffraction (XRD), FT-IR spectroscopy and by a chemical composition analysis. From the results of the characterization process, we found that diethylene glycol is the most efficient liquid medium when silicon powder is ground using a wet-milling process. The FT-IR results show that the Si-O band intensity in an unground silicon powder is quite strongbecause oxygen becomes incorporated with silicon to form $SiO_2$ in air. By applying deionized water as a liquid medium for the grinding of silicon, the $SiO_2$ content increased from 4.12% to 31.7%. However, in the cases of dehydrated ethanol and diethylene glycol, it was found that the $SiO_2$ contents after grinding only changed insignificantly, from 4.12% to 5.91% and 5.28%, respectively.

Surface Treatment of Mg95Zn4.3Y0.7 Alloy Powder Consolidates using Plasma Electrolytic Oxidation (플라즈마 전해산화공정을 이용한 Mg95Zn4.3Y0.7 합금분말 성형체의 표면특성제어)

  • Kim, J.H.;Choi, H.S.;Kim, D.H.;Hwang, D.Y.;Kim, H.S.;Kim, T.S.
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.95-100
    • /
    • 2008
  • The investigation is to modify the mechanical and chemical properties of Mg alloys using a combination of rapid solidification and surface treatment. As the first approach, $Mg_{95}Zn_{4.3}Y_{0.7}$ was gas atomized and pressure sintered by spark plasma sintering process (SPS), showing much finer microstructure and higher strength than the alloys as cast. Further modification was performed by treating the surface of PM Mg specimen using Plasma electrolytic oxidation (PEO) process. During the PEO processing, MgO layer was initiated to form on the surface of Mg powder compacts, and the thickness and the density of MgO layer were varied with the reaction time. The thickening rate became low with the reaction time due to the limited diffusion rate of Mg ions. The surface morphology, corrosion behavior and wear resistance were also discussed.

Quality Characteristics of Dough Liquid according to the Addition Ratio of Doraji in Seaweed Snack Manufacturing (김스낵 제조시 도라지 첨가량에 따른 반죽액의 품질 특성)

  • Choi, Mi-Ae;Kim, Sun Hwa
    • Culinary science and hospitality research
    • /
    • v.24 no.3
    • /
    • pp.196-203
    • /
    • 2018
  • This study was examined the quality characteristics of dough liquid according to the additional ratio of Doraji in seaweed snack manufacturing. Firstly, the results of Doraji type (dry & powder) were as follows: Carbohydrates 77.57~79.29, crude protein 9.10-9.25, crude fat 0.96~1.33 and calories 355~366 kcal, pH 5.42~5.45, sugar $3.53{\sim}3.96^{\circ}brix$, color 33.82~44.25 (L), 2.27~3.52 (B) and total free amino acids 2,200~2,699 mg/100 g. Total polyphenol contents had dry extracts 1,931.18 mg% and powder extract 1,382.43 mg%, DPPH and ABTs radical scavenging activities tended to increase with higher treatment concentration. Next, the results showed that dough liquid for seaweed snack manufacture which was added Doraji were as follows: Color became deep poppy red with increased addition of Doraji. The texture of adhesiveness, cohesiveness, chewiness, and brittleness tended to decrease with addition of Doraji. The springness showed the opposite tendency. Accordingly, these results suggest that 20% of dry Doraji extract is a proper proportion so that it can be added to the rice dough liquid to produce form Doraji (dry and powder) containing seaweed snacks.

Mechanical Properties of Beta-Sialon Ceramics Prepared from TEOS and Kaolin (TEOS와 카올린으로부터 제조한 $\beta$-Sialon의 기계적 성질)

  • 임헌진;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.637-644
    • /
    • 1989
  • Beta-sialon powder(Z=1) was synthesized by the simultaeous reduction and nitridation of the mixed powders of Hadong kaolin and silica. Silicon hydroxide was prepared from Si-alkoxide by a hydrolysis method and amorphous silica was obtained from the calcination of the prepared silicon hydroxide. Hadong kaolin was mixed with both the silicon hydroxide and amorphous silica, respectively. The average particle size was 4${\mu}{\textrm}{m}$ and the morphology of particle was rod-like and equiaxed in the case of beta-sialon powder prepared form Hadong kaolin and silicon hydroxide(COMPOSITION A), whereas the average particle size was 3${\mu}{\textrm}{m}$ and the morphology of particle was equiaxed in the case of beta-sialon powder prepared from Hadong kaolin and amorphous silica(COMPOSITION B). The synthesized beta-sialon powders were hot-pressed at 175$0^{\circ}C$ for 2 hours under 30 MPa in a nitrogen atmosphere after YAG composition(8wt%) was added to these powders as a sintering agent. The hot-pressed specimens were annealed a 140$0^{\circ}C$ for 4 hours in a nitrogen atmosphere. The mechanical properties of sintered bodies were investigated in terms of M.O.R., fracture toughness and hardness. The measured values are as follows. COMPOSITION A : M.O.R. 508MPa, KIC 3.5MN/m3/2, hardness 13.6GPa. COMPOSITION B : M.O.R. 653MPa, KIC 5.4MN/m3/2, hardness 13.5GPa.

  • PDF

In-situ Synthesis of Cu-TiB2 Nanocomposite by MA/SPS

  • Kwon, Young-Soon;Kim, Ji-Soon;Kim, Hwan-Tae;Moon, Jin-Soo;D.V Dudina;O.I. Lomovsky
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.443-447
    • /
    • 2003
  • Nano-sized $TiB_2$ was in situ synthesized in copper matrix through self-propagating high temperature synthesis (SHS) with high-energy ball milled Ti-B-Cu elemental mixtures as powder precursors. The size of $TiB_2$ particles in the product of SHS reaction decreases with time of preliminary mechanical treatment ranging from 1 in untreated mixture to 0.1 in mixtures milled for 3 min. Subsequent mechanical treatment of the product of SHS reaction allowed the $TiB_2$ particles to be reduced down to 30-50 nm. Microstructural change of $TiB_2$-Cu nanocomposite during spark plasma sintering (SPS) was also investigated. Under simultaneous action of pressure, temperature and electric current, titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton.