• Title/Summary/Keyword: Powder coating

Search Result 762, Processing Time 0.025 seconds

Enhanced Electrochemical Property of Surface Modified Li[Co1/3Ni1/3Mn1/3]O2 by ZrFx Coating

  • Yun, Su-Hyun;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.355-359
    • /
    • 2010
  • A $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ cathode was modified by applying a $ZrF_x$ coating. The surface-modified cathodes were characterized by XRD, SEM, EDS, TEM techniques. XRD patterns of $ZrF_x$-coated $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ revealed that the coating did not affect the crystal structure of the parent powder. SEM and TEM images showed that $ZrF_x$ nano-particles were formed as a coating layer, and EDS data confirmed that $ZrF_x$ distributed uniformly on the surface the powder. Capacity retention of coated samples at high C rates was superior to that of pristine sample. However, as the coating concentration increases beyond the optimum concentration, the rate capability was deteriorated. Whereas, as the increase of coating concentration to 2.0 wt %, the cyclic performances of the electrodes under the severe conditions (high cut-off voltage, 4.8 V, and high measurement temperature, $55^{\circ}C$) were improved considerably.

초고속 스핀들의 내구성 향상을 위한 WC-Co 분말의 HVOF 용사 코팅 (HVOF Thermal Spray Coating of WC-Co for Durability Improvement of High Speed Spindle)

  • 김길수;백남기;윤재홍;조동율;윤석조;오상균;황순영;천희곤
    • 한국표면공학회지
    • /
    • 제39권4호
    • /
    • pp.179-189
    • /
    • 2006
  • High velocity oxygen fuel(HVOF) thermal spray coating of WC-Co powder is one of the most promising candidate for the replacement of the traditional hard chrome plating and ceramics coating because of the environmental problem of the very toxic $Cr^{6+}$ known as carcinogen and the brittleness of ceramics coating. WC-Co micron and nano powder were coated by HVOF thermal spraying method for the study of durability improvement of the high speed spindle. Coatings were planned by Taguchi program for the four spray parameters of spray distance, flow rates of hydrogen, oxygen and powder feed rate. Optimal coating process was obtained by the studies of coating properties such as porosity, surface roughness, micro hardness, and micro structure. WC-Co micron and nano powder were coated on the Inconel 718 substrate by the optimal coating process obtained in this study. The wear behaviors were studied by the sliding wear tester at room temperature and at an elevated temperature of $500^{\circ}C$ for the application to high speed spindle. Sliding wear test was carried out for four most promising hard coatings of chrome coating, ceramics coatings such as $A1_2O_3,\;Cr_2O_3$ and HVOF Co-alloy T800 for the comparison of their wear behaviors. HVOF WC-Co coating was better than other coatings showing highest micro hardness of 1400 Hv and comparable friction coefficients with others. HVOF WC-Co coating is a strong candidate for the replacement of the traditional hard chrome plating for the high speed spindle.

A Separator with Activated Carbon Powder Layer to Enhance the Performance of Lithium-Sulfur Batteries

  • Vu, Duc-Luong;Lee, Jae-Won
    • 한국분말재료학회지
    • /
    • 제25권6호
    • /
    • pp.466-474
    • /
    • 2018
  • The high theoretical energy density ($2600Wh\;kg^{-1}$) of Lithium-sulfur batteries and the high theoretical capacity of elemental sulfur ($1672mAh\;g^{-1}$) attract significant research attention. However, the poor electrical conductivity of sulfur and the polysulfide shuttle effect are chronic problems resulting in low sulfur utilization and poor cycling stability. In this study, we address these problems by coating a polyethylene separator with a layer of activated carbon powder. A lithium-sulfur cell containing the activated carbon powder-coated separator exhibits an initial specific discharge capacity of $1400mAh\;g^{-1}$ at 0.1 C, and retains 63% of the initial capacity after 100 cycles at 0.2 C, whereas the equivalent cell with a bare separator exhibits a $1200mAh\;g^{-1}$ initial specific discharge capacity, and 50% capacity retention under the same conditions. The activated carbon powder-coated separator also enhances the rate capability. These results indicate that the microstructure of the activated carbon powder layer provides space for the sulfur redox reaction and facilitates fast electron transport. Concurrently, the activated carbon powder layer traps and reutilizes any polysulfides dissolved in the electrolyte. The approach presented here provides insights for overcoming the problems associated with lithium-sulfur batteries and promoting their practical use.

저온 분사 코팅법으로 제조된 Cu/CNT 복합 코팅층의 미세조직 및 물성 연구 (A Study on the Microstructure and Physical Properties of Cold Sprayed Cu/CNT Composite Coating)

  • 권성희;박동용;이대열;어광준;이기안
    • 대한금속재료학회지
    • /
    • 제46권3호
    • /
    • pp.182-188
    • /
    • 2008
  • Carbon nanotubes(CNTs) have outstanding mechanical, thermal, and electrical properties. Thus, by placing nanotubes into appropriate matrix, it is postulated that the resulting composites will have enhanced properties. Cold spray can produce thick metal-based composite coatings with very high density, low oxygen content, and phase purity, which leads to excellent physical properties. In this study, we applied cold spray coating process for the consolidation of Cu/CNT composite powder. The precursor powder mixture, in which CNTs were filled into copper particles, was prepared to improve the distribution of the CNT in copper matrix. Pure copper coating was also conducted by cold spraying as a reference. Annealing heat treatment was applied to the coating to examine its effect on the properties of the composite coating. The hardness of Cu/CNT composite coating represented similar value to that of pure copper coating. It was importantly found that the electrical conductivity of the Cu/CNT composite coating significantly increased from 53% for the standard condition to almost 55% in the optimized condition, taking annealed ($500^{\circ}C/1hr$.) copper coating as a reference (100%). The thermal conductivity of Cu/CNT composite coating layer was higher than that of pure Cu coating. It was also found that the electrical and thermal conductivities of Cu/CNT composite could be improved through annealing heat treatment. The microstructural evolution of Cu/CNT coating was also investigated and related to the macroscopic properties.

BGsome이 코팅된 일라이트 및 이를 함유한 페이스 파우더의 특성 (Characteristics of BGsome-Coated Illite as a Face Powder)

  • 임진경;진병석
    • 공업화학
    • /
    • 제24권2호
    • /
    • pp.126-131
    • /
    • 2013
  • 메이크업 화장품 원료로 사용되는 일라이트 분체에 피부 친화성을 부여하고 다양한 특성을 개선하고자 분체 표면에 BGsome 코팅을 시도하였다. BGsome은 1,3-부칠렌 글리콜에 용해된 레시틴을 수화시키는 과정을 통하여 만들어지는 수화 액정형 베시클이다. BGsome 베시클 입자를 습식방법으로 분체 표면에 코팅시키고 TGA, SEM, 입자크기 측정기 등을 사용하여 코팅된 분체를 분석하였다. BGsome 코팅에 의한 유동성, 분산도, 발림성, 부착성 등과 같은 여러 물성의 변화도 살펴보았다. 코팅된 일라이트의 유동성이 개선됨은 안식각 감소 결과로부터 알 수 있고 기타 분산도, 발림성, 부착성 등도 크게 개선됨을 확인하였다. 부착성 테스트 결과에서 코팅된 일라이트가 인조가죽 위에 뭉침이 없이 고르게 퍼지는 현상을 볼 수가 있었다. 코팅된 일라이트를 함유하는 페이스 파우더 또한 유동성, 분산도, 발림성, 부착성 등이 모두 개선된 결과를 나타내었다.

Sol-gel dip coating에 의한 ZnO 투명전도막의 특성고찰 (Properties of Zinc oxide films prepared by sol-gel dip coating)

  • 김범석;구상모;김창열
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 춘계학술발표강연 및 논문개요집
    • /
    • pp.191-191
    • /
    • 2003
  • 가시광선영역에서 높은 광학적 투명도를 갖는 n-type 반도체인 ZnO 박막은 넓은 범위에서 응용되고 있다. 현재 ZnO 박막의 특성 향상을 위하여 여러 원소(Al, Ga)의 도핑을 시도하고 있다. 특히 Al-doped ZnO 박막은 sol-gel dip coating에 의해서도 높은 전기전도도와 투과율로 활발히 연구되고 있다 본 논문에서는 여러 도핑농도를 갖는 Al-doped ZnO 박막이 sol-gel dip coating법에 의해 준비되었다. Al-doped ZnO 박막은 zinc acetate [Zn($CH_3$COO$_2$)ㆍ2$H_2O$] powder 와 여러 도핑농도를 갖는 aluminum nitrate (Al(NO$_3$)$_3$ㆍ9$H_2O$) powder를 알코올에 용해하여 $H_2O$, Ethylene glycol, Ethylene diamine 등을 첨가하여 제조하였다 XRD와 SEM (Scanning electron microscope)이 막의 상형성 분석을 위해 이용되었으며, 가시광선 영역 투과율(UV/VIS spectrophotometer)과 표면전기저항(four point probe)이 주요 특성으로 분석되었다.

  • PDF

A Nano-particle Deposition System for Ceramic and Metal Coating at Room Temperature and Low Vacuum Conditions

  • Chun, Doo-Man;Kim, Min-Hyeng;Lee, Jae-Chul;Ahn, Sung-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.51-53
    • /
    • 2008
  • A new nano-particle deposition system (NPDS) was developed for a ceramic and metal coating process. Nano- and micro-sized powders were sprayed through a supersonic nozzle at room temperature and low vacuum conditions to create ceramic and metal thin films on metal and polymer substrates without thermal damage. Ceramic titanium dioxide ($TiO_2$) powder was deposited on polyethylene terephthalate substrates and metal tin (Sn) powder was deposited on SUS substrates. Deposition images were obtained and the resulting chemical composition was measured using X-ray photoelectron spectroscopy. The test results demonstrated that the new NPDS provides a noble coating method for ceramic and metal materials.

Microstructural Characterization and Plasma Etching Resistance of Thermally Sprayed $Al_2O_3$ and $Y_2O_3$ Coatings

  • Baik, Kyeong-Ho;Lee, Young-Ra
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.234-235
    • /
    • 2006
  • In this study, the plasma sprayed $Al_2O_3$ and $Y_2O_3$ coatings have been investigated for applications of microelectronic components. The plasma sprayed coatings had a well-defined splatted lamellae microstructure, intersplat pores and a higher amount of microcracks within the splats. The plasma sprayed $Y_2O_3$ coating had a relatively lower hardness of 300-400Hv, compared to 650-800Hv for $Al_2O_3$ coating, and would be readily damaged by mechanical attacks such as erosion, wear and friction. For a reactive ion etching against F-containing plasmas, however, the $Y_2O_3$ coating had a much higher resistance than the $Al_2O_3$ coating because of the reduced erosion rate of by-products.

  • PDF

Ceramic Materials Selection of Fuel Crucibles based on Plasma Spray Coating for SFR

  • Song, Hoon;Kim, Jong-Hwan;Kim, Hyung-Tae;Ko, Young-Mo;Woo, Yoon-Myung;Oh, Seok-Jin;Kim, Ki-Hwan;Lee, Chan-Bock
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2012년도 추계학술논문요약집
    • /
    • pp.131-132
    • /
    • 2012
  • The vacuum plasma coating was performed to analysis the characteristic and find the optimum process conditions for the vacuum plasma spray coating. It was observed that the square shape of powder in case of carbide ceramics does not fluidize well compared to the round shape of powder in case of oxide ceramics so that the plasma spraying is not uniform. The analysis through SEM and EDS mapping shows that the coatings represent excellent structural features with strong resistance against oxidation and satisfied result with vacuum plasma coating.

  • PDF

기존 세라믹 및 초고속 용사 분말피막 표면개질 플런저의 내구성 특성에 관한 연구 (A Study on Durability Characteristics for Plungers of Conventional Ceramic and Surface Modification by Powder Coating Using High Velocity Oxygen Fuel Thermal Spray)

  • 배명환;박병호;정화
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.285-293
    • /
    • 2016
  • The high velocity oxygen fuel(HVOF) thermal spray is a kind of surface modification techniques to produce the sprayed coating layer. This process is to form the coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. The efficiency of thermal spraying is dropped, however, because the semi-molten powder in a spray process become a factor that degrades the mechanical property by the formed pore within the coating layer. Therefore, it is necessary to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesive force. In this study, to improve the wear resistance, corrosion resistance and heat resistance, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps used in ironworks are manufactured with STS $420J_2$ and are coated by the powders of WC-Co-Cr and WC-Cr-Ni including the WC of high hardness using a HVOF thermal sprayer developed in this laboratory. These are called by the surface-modified plungers. The surface roughness, hardness, and surface and cross-sectional microstructure of these two surface-modified and conventional ceramic plungers are measured and compared before operation with after operation for 100 days. It is found that the values of centerline average surface roughness and maximum height for conventional ceramic plunger are 9.5 to 10.8 and 5.2 to 5.7 times higher than those of surface-modified ones coated by WC-Co-Cr and WC-Cr-Ni because the fine tops and bottoms on surface roughness curve of conventional ceramic plunger are approximately 100 times higher than those of surface-modified ones. In addition, the pores and scratches in the surface microstructure are considerably formed in the order of conventional ceramic, WC-Cr-Ni and WC-Co-Cr surface-modified plungers. The greater the WC content of high hardness powder is less the change in the plunger surface.