• Title/Summary/Keyword: Pour Point

Search Result 56, Processing Time 0.023 seconds

Possibility of Obtaining Lubricant Base Oil from Talakan Crude Oil Suitable for Exploitation in Extremely Cold Conditions in the Republic of Sakha (Yakutia)

  • Zhirkov, N.P.;Zakharova, S.S.;Sung, Zoo-One
    • Tribology and Lubricants
    • /
    • v.31 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • This paper addresses the problems of using anti-freeze lubricants for different machines that must function at extremely low temperatures during winter operation in the Republic of Sakha (Yakutia). We discuss the possibility of obtaining anti-freeze base oils from Talakan crude oil, an area with major oil and gas deposits of the Republic of Sakha, and also provide the trade and technological classification of Talakan crude oil. We propose two different schemes for processing Talakan crude oil: the fuel scheme (obtaining light and heavy fractions as a fuel oil) and the base oil scheme (obtaining light fractions and base oils). We investigate the influence of pour point depressants on alkyl-methacrylate base on the low-temperature properties of the fractions obtained from Talakan crude oil and Korean base oils, and establish the optimal concentration of pour point depressants. We compare the properties of these fractions with the low-temperature properties of Korean base oils and find that the commercial oil "Ravenol 0W-40" provides optimistic results. We obtain oil with a pour point of minus $50^{\circ}C$ and a viscosity index greater than 100. The Design of Experiment was used to establish the optimum composition of the pour point depressants and the base oil S-8 to obtain lubricant oil with a kinematic viscosity of 17 cSt, viscosity index of 208, and a pour point of minus $64^{\circ}C$.

Fuel Qualities of Different Biodiesels in the Gun Type Burner (바이오디젤의 난방유로서의 연료특성)

  • Kim, Y.J.;Kang, Y.K.;Kang, K.C.;Ryou, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.2
    • /
    • pp.124-129
    • /
    • 2008
  • In this study, fuel qualities including kinematic viscosity and pour point in the various temperature, calorific value and combustion characteristics of two biodiesels based on the soybean and waste oil blended with light oil were investigated and discussed in order to figure out to confirm fuel compatibility taking the place of light oil in the hot air heater or boiler. As biodiesel content ratio increased calorific value of biodiesel decreased, and the difference was 13% between 100%-biodiesel and light oil. In general, pour points of the biodiesels were higher than light oil, and as biodiesel content ratio increased pour point increased. About 15 cSt was the pour point of biodiesels and light oil, which occurred at 3 to $4^{\circ}C$ in the biodiesels and $-25^{\circ}C$ in the light oil. Flame dimensions of biodiesels and light oil were almost same at the same combustion condition in the burner of the hot air heater. CO concentrations in the exhaustion gas were far lower than those of the light oil. Though pour point of biodiesel is a little inferior to light oil, still biodiesel can be an alternative fuel substituting for light oil in combustion system without much modifying the current oil combustion mechanism.

The Lightning Impulse Properties and Breakdown Voltage of Natural Ester Fluids Near the Pour Point

  • Choi, Sun-Ho;Huh, Chang-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.524-529
    • /
    • 2013
  • Recently, researchers have become interested in natural ester fluids, as they are an environmentally friendly alternative to mineral oils. Natural ester fluids are a natural resource made from plants; they have higher biodegradability, flash, and fire points, and a greater permittivity compared to conventional mineral oils. However, natural ester fluids also have a higher pour point, viscosity, and water content. These characteristics can hamper circulation and impair the electrical properties of an oil-filled transformer. A large amount of data has been accumulated over the years in regards to mineral insulating oil involving dielectric breakdown voltage and lightning impulse tests. However, natural ester fluids have not had their electrical properties sufficiently characterized. In this paper, we present an investigation into the characteristics of the electrical discharge development in natural ester fluids and in an oil-filled transformer near the pour points. The experiment results show that the electrical properties decreased according to a decrease in the ambient temperature and freezing time. It was found that the pour point and water content of natural ester fluids have a significant effect on the electrical properties.

Improvement of Low Temperature Fuel Characteristics by Pour Point Depressant (유동점 강하제에 의한 바이오디젤 저온특성 향상)

  • Lim, Young-Kwan;Lee, Joung-Min;Jeong, Choong-Sub;Kim, Jong-Ryeol;Yim, Eui-Soon
    • Tribology and Lubricants
    • /
    • v.27 no.2
    • /
    • pp.109-114
    • /
    • 2011
  • The low temperature characteristics of automotive diesel have been legally regulated due to the fact that solid particle in diesel at low temperature can cause severe problems in the vehicle. The biodiesel is well known for eco-friendly fuel, which is one of the most popular alternative petrodiesel, but it is easy to solidified at low temperature than petrodiesel at low temperature. For that reason, in this study, we investigated the low temperature fuel characteristics of diesel-biodiesel blends which were prepared to mix 6 different kinds of biodiesel to winter diesel fuel, respectively. Also, we confirmed to improve low temperature fuel characteristics by pour point depressant.

A Study on the Control of Microstructures of Polyalphaolefins via Cationic Polymerization (양이온 중합을 이용한 폴리알파올레핀의 미세구조 조절에 관한 연구)

  • Ko, Young Soo;Kwon, Wan-Seop;No, Myoung-Han;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.346-352
    • /
    • 2015
  • Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in the terms of physical and chemical characteristics such as low pour point, high viscosity index (VI), and thermal and oxidation stability. Several kinds of PAOs have been synthesized by using 1-pentene, 1-hexene, 1-octene, or 1-dodecene as monomer with three kinds of aluminum-based Lewis acid catalysts via cationic polymerization. The control of the catalytic performance and physical properties of PAO such like molecular weight, kinematic viscosity, pour point, and viscosity index was done by changing polymerization parameters. The alkyl aluminum halide-based catalysts show better catalytic activity than that of the conventional $AlCl_3$ catalyst. The microstructure of PAO was investigated by means of TOF-MS (time of flightmass spectroscopy) analysis in order to elucidate the correlation between the performances of the lubricant (VI, pour point) and the molecular structure of PAO. The VI of PAO increases with increases in the carbon number of ${\alpha}$-olefin. In other words, the performances of PAO as a lubricant strongly depended on the branch length of PAO.

Renewable Low-viscosity Dielectrics Based on Vegetable Oil Methyl Esters

  • Yu, Hui;Yu, Ping;Luo, Yunbai
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.820-829
    • /
    • 2017
  • Vegetable oil dielectrics have been used in transformers as green alternatives to mineral insulating oils for about twenty years, because of their advantages of non-toxic, biodegradability, and renewability. However, the viscosity of vegetable oils is more than 3 times of mineral oils, which means a poor heat dissipation capacity. To get low-viscosity dielectrics, transesterification and purification were performed to prepare vegetable oil methyl esters in this study. Electrical and physical properties were determined to investigate their potential as dielectrics. The results showed that the methyl ester products had good dielectric strengths, high water saturation and enough fire resistance. The viscosities (at $40^{\circ}C$) were 0.2 times less than FR3 fluid, and 0.7 times less than mineral oil, which indicated superior cooling capacity as we expected. With the assistance of 0.5 wt% pour point depressants, canola oil methyl ester exhibited the lowest pour point ($-26^{\circ}C$) among the products which was lower than FR3 fluid ($-21^{\circ}C$) and 25# mineral oil ($-23^{\circ}C$). Thus, canola oil methyl ester was the best candidate as a low-viscosity vegetable oil-based dielectric. The low-viscosity fluid could extend the service life of transformers by its better cooling capacity compared with nature ester dielectrics.

Synthesis of Poly(styrene-co-alkyl methacylate)s for Pour Point Depressants of Diesel containing Biodiesel (바이오디젤을 함유한 경유용 저온유동성 향상제의 합성: 폴리(스티렌-co-알킬 메타크릴레이트))

  • Yang, Young-Do;Kim, Young-Wun;Chung, Keun-Wo;Hwang, Do-Huak;Hong, Min-Hyeuk
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.497-503
    • /
    • 2008
  • A variety of techniques has been employed in order to reduce problems caused by the crystallization of paraffin and saturated fatty acid esters in diesel fuel containing biodiesels. Methacrylate copolymers are known as additives which reduce the pour point and cold filtering plugging point (CFPP) of diesel fuels. This paper describes the synthesis, characterization and low temperature properties, having as an initial step the synthesis of the alkyl methacrylate monomers by esterification of methacrylic acid with C12, C18, and C22 fatty alcohols. The copolymerization of these monomers with styrene was then performed, with molar ratios of 30:70, 50:50 and 70:30 for styrene:alkyl methacrylate. All copolymers were characterized by $^1H-NMR$, FT-IR, and gel permeation chromatography (GPC). The poly(styrene-co-alkyl methacrylate)s (PStmSMAn) leads to a large reduction in the pour point and CFPP of poly(styrene-co-alkyl methacrylate) in ultra low sulfur diesel (ULSD) and BD5 with treated 100~5000 ppm of poly(styrene-co-alkyl methacrylate). BD5 fuel containing 5000 ppm of the copolymer (PSt82SMA18) showed a $25^{\circ}C$ and $9^{\circ}C$ reduction in their pour points and CFPP, respectively.

Synthesis of Poly(alkyl methacrylate)s Containing Various Side Chains for Pour Point Depressants (서로 다른 측쇄 구조를 가진 폴리(알킬 메타크릴레이트)계의 저온유동성 향상제 합성)

  • Hong, Jin-Sook;Kim, Young-Wun;Chung, Keun-Wo;Jeong, Soo-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.542-547
    • /
    • 2010
  • n-Paraffin and saturated fatty acid methyl esters in the diesel and bio-diesel fuel crystallize at low temperature. Many articles have addressed various solutions for the low temperature crystallization problem and one of them is the use of methacrylate copolymers. In this work, we synthesized a series of copolymers in the reaction condition of 70 : 30 molar ratio of lauryl methacrylate (LMA) (or stearyl methacrylate (SMA)) and alkyl methacrylates. The structures of the copolymers were characterized by $^1H$-NMR and FT-IR spectroscopy, and the molecular weight of copolymers were obtained from Gel Permeation Chromatography (GPC) method. The concentrations of additives were 500~1000 ppm and 1000~10000 ppm in diesel fuels and bio-diesel fuel (BD5 and BD20), respectively. The addition of copolymers changes the many properties of fuel such as the pour point (PP), cloud point (CP) and cold filtering plugging point (CFPP). For example, the low temperature properties of the copolymers containing SMA ($PSMAmR_2n$) were excellently improved about 15, 7, and $10^{\circ}C$ for PP, CP and CFPP, respectively.

Synthesis of Biodiesel from Vegetable Oil and Their Characteristics in Low Temperature (식물성 오일로부터 바이오디젤의 합성과 저온특성)

  • Lim, Young-Kwan;Kim, DongKil;Yim, Eui Soon
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.208-212
    • /
    • 2009
  • Biodiesel come from animal fat and vegetable oil by methanolysis was known for eco-friendly fuel for the alternative petrodiesel. But, various kinds of biodiesel need to analyze the cold characteristic due to poor fuel properties than petrodiesel in a cold condition. In this paper, 12 types of biodiesel were synthesized in 86~96% yields from 12 kinds of vegetable oil by transesterification. These synthesized biodiesels were analyzed in terms of the cold characteristics like cloud point, pour point, and cold filter plugging point (CFPP). The biodiesel comes from perilla oil which has rich olefin showed the excellent fuel characteristics in a low temperature.

Chemical reconstruction of Castor Oil --Research of Environmentally Friendly Lubricants

  • Tao, De-Hua;Ye, Bin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.339-340
    • /
    • 2002
  • Natural castor oil was chemically reconstructed to extend the carbon chains by means of iso-reaction so as to improve the rheological behavior, by way of increasing the viscosity index and decreasing the pour point. The rheological and tribological characteristics of the reconstructed castor oil were comparatively investigated with those of the natural castor oil and several other vegetable oils and a mineral oil. The friction and wear test results on a four-ball machine indicate that the chemically reconstructed castor oil has considerably improved rheological and tribological properties as compared with the natural castor oil. It shows a greatly increase viscosity index and largely decreased pour point, which makes it applicable to low temperature lubrication. The chemically reconstructed castor oil even shows better tribological behavior than pentaerythritol ester or di-iso-capryl sebacate. However, it is still needed to increase the oxidation stability of the reconstructed castor oil.

  • PDF