Synthesis of Biodiesel from Vegetable Oil and Their Characteristics in Low Temperature

식물성 오일로부터 바이오디젤의 합성과 저온특성

  • Lim, Young-Kwan (Research Center, Korea Institute of Petroleum Quality) ;
  • Kim, DongKil (Research Center, Korea Institute of Petroleum Quality) ;
  • Yim, Eui Soon (Research Center, Korea Institute of Petroleum Quality)
  • 임영관 (한국석유품질관리원 연구센터) ;
  • 김동길 (한국석유품질관리원 연구센터) ;
  • 임의순 (한국석유품질관리원 연구센터)
  • Received : 2009.01.20
  • Accepted : 2009.02.03
  • Published : 2009.04.10

Abstract

Biodiesel come from animal fat and vegetable oil by methanolysis was known for eco-friendly fuel for the alternative petrodiesel. But, various kinds of biodiesel need to analyze the cold characteristic due to poor fuel properties than petrodiesel in a cold condition. In this paper, 12 types of biodiesel were synthesized in 86~96% yields from 12 kinds of vegetable oil by transesterification. These synthesized biodiesels were analyzed in terms of the cold characteristics like cloud point, pour point, and cold filter plugging point (CFPP). The biodiesel comes from perilla oil which has rich olefin showed the excellent fuel characteristics in a low temperature.

동식물의 유지로부터 합성된 바이오디젤은 기존 석유디젤을 대체할 수 있는 친환경적인 연료로 알려져 있다. 하지만 바이오디젤은 석유디젤에 비해 낮은 온도에서 연료특성이 열악한 것으로 알려져 있기 때문에 다양한 원료별 바이오디젤의 저온특성 분석이 필요하다. 본 연구에서는 12종류의 다양한 식물성오일로부터 트란스에스테르화를 시킨 결과, 86~96%의 높은 수율로 바이오디젤을 얻을 수 있었다. 이렇게 합성된 바이오디젤을 운점, 유동점, 저온필터막힘점을 측정한 결과, 올레핀 함량이 높은 들기름으로부터 합성된 바이오디젤의 저온특성이 가장 우수하였다.

Keywords

References

  1. G. O. Garcia, E. Croiset, P. Douglas, A. Elkamel, and M. Gupta, Energy & Fuel, 21, 2098 (2007) https://doi.org/10.1021/ef0700984
  2. C. J. Campbell and J. H. Laherrere, Sci. Am., 278, 77 (1998) https://doi.org/10.1038/scientificamerican0398-77
  3. http://www.geni.org/globalenergy/policy/renewableenergy/index.shtml
  4. E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, and J. G. Goodwin Jr, Ind. Eng. Chem. Res., 44, 5353 (2005) https://doi.org/10.1021/ie049157g
  5. S. S. Kim, K. H. Kim, S. C. Shin, and E. S. Yim, J. Korean Ind. Eng. Chem., 18, 401 (2007)
  6. Y. K. Lim, S. C. Shin, J. R. Kim, E. S. Yim, H. O. Song, and D. Kim, J. Korean Ind. Eng. Chem., 19, 617 (2008)
  7. M. Balat, H. Balat, and C. Oz, Prog. Energy and Combust. Sci., 34, 551 (2008) https://doi.org/10.1016/j.pecs.2007.11.001
  8. M. Cohron, H. Zhao, H. Liu, and W. Pan, Energy & Fuels, 22, 1720 (2008) https://doi.org/10.1021/ef7005707
  9. Y. K. Hong and W. H. Hong, Korean Chem. Eng. Res., 45, 424 (2007)
  10. N. U. Soriano Jr, R. Venditti, and D. S. Argyropoulos, Fuel, 88, 560 (2009) https://doi.org/10.1016/j.fuel.2008.10.013
  11. D. Bajpai and V. K. Tyagi, J. Oleo. Sci., 55, 487 (2006) https://doi.org/10.5650/jos.55.487
  12. R. L. Muncrief, C. W. Roofs, M. Cruz, and M. P. Harold, Energy & Fuels, 22, 1285 (2008) https://doi.org/10.1021/ef700465p
  13. H. Huo, M. Wang, C. Bloyd, and V. Putsche, Environ. Sci. Technol., ASAP (2009)
  14. H. S. Lee, J. J. Choi, Y. H. Shin, Y. Lim, C. Han, H. Kim, and Y. W. Lee, Korean Chem. Eng. Res., 46, 747 (2008)
  15. A. Salis, M. Pinna, M. Monduzzi, and V. Solinas, J. Biotechnol., 119, 291 (2005) https://doi.org/10.1016/j.jbiotec.2005.04.009
  16. J. D. Choi, D. K. Kim, J. Y. Park, Y. W. Rhee, and J. S. Lee, Korean Chem. Eng. Res., 46, 194 (2008)
  17. Y. K. Lim, S. C. Shin, E. S. Yim, and H. O. Song, J. Korean Ind. Eng. Chem., 19, 137 (2008)
  18. T. S. Koh and K. H. Chung, J. Korean Ind. Eng. Chem., 19, 214 (2008)
  19. B. R. Moser, Energy & Fuels, 22, 4301 (2008) https://doi.org/10.1021/ef800588x
  20. M. J. Ramos, C. M. Fern\acute{a}ndez, A. Casas, L. Rodr$\acute{i}$guez, and \acute{A}. P\acute{e}rez, Bioresource Techn., 100, 261 (2009) https://doi.org/10.1016/j.biortech.2008.06.039
  21. C. R. Krishna, K. Thomassen, C. Brown, T. A. Butcher, M. Anjom, and D. Mahajan, Ind. Eng. Chem. Res., 46, 8846 (2007) https://doi.org/10.1021/ie070110f
  22. A. Bouaid, M. Martinez, and J. Aracil, Bioresource Technol., 1001, 2234 (2009)
  23. R. O. Dunn and M. O. Bagby, JAOCS, 72, 895 (1995) https://doi.org/10.1007/BF02635784
  24. H. Tang, S. O. Salley, and K. Y. S. Ng, Fuel, 87, 3006 (2008) https://doi.org/10.1016/j.fuel.2008.04.030
  25. R. F. Alex, B. J. Fuhr, and L. L. Klein, Energy & Fuels, 5, 866 (1999) https://doi.org/10.1021/ef00030a015
  26. K. S. Pederson and H. P. Rnnigsen, Energy & Fuels, 17, 321 (2003) https://doi.org/10.1021/ef020142+
  27. W. V. Cropper and G. L. Hammond, Ind. Eng. Chem., 57, 37 (1965) https://doi.org/10.1021/ie50662a006
  28. Business act for quality standard inspection method and inspection fee for petroleum product, Ministry of Commerce, Industry and Energy, 2006-42
  29. A. Kleinova, J. Paligova, M. Vrbova, J. Mikulec, and J. Cvengros, Trans IChemE, Part B. Process Safety and Environmental Protection, 85, 390 (2007) https://doi.org/10.1205/psep07009
  30. I. H. Ro and M. A. Lim, Yakhak Hoeji, 27, 169 (1983)