• Title/Summary/Keyword: Potentiodynamic polarization test

Search Result 130, Processing Time 0.025 seconds

Corrosion Characteristics and Surface Morphologies of TiN and ZrN Film on the Abutment Screw by Arc-ion Coating(II) (어버트먼트 나사에 아-크 이온도금된 TiN과 ZrN피막의 부식특성과 표면 형상 (II))

  • Jeong, Y.H.;Kwag, D.M.;Chung, C.H.;Kim, W.G.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.212-217
    • /
    • 2011
  • In this study, corrosion characteristics of TiN and ZrN film on the abutment screw by arc-ion plating were investigated using a potentiodynamic anodic polarization test in deaerated 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The surface morphologies of the coating layers before and after corrosion test were investigated by a field-emission scanning electron microscope (FE-SEM) and a energy dispersive x-ray spectroscopy (EDS). The surfaces of the TiN and ZrN coated abutment screws showed the smooth surfaces without mechanical defects like scratches which can be formed during the manufacturing process, compared with those of the non-coated abutment screw. The corrosion and passive current densities of TiN and ZrN coated abutment screws were lower than those of the non-coated abutment screw.

Investigation on Electrochemical Characteristics of Metallic Bipolar Plates with Chloride Concentrations for PEMFC (고분자 전해질 연료전지 금속 분리판용 금속의 염화물 농도에 따른 전기화학적 특성 연구)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.347-360
    • /
    • 2021
  • Currently, the demand for eco-friendly energy sources is high, which has prompted research on polymer electrolyte membrane fuel cells. Both aluminum alloys and nickel alloys, which are commonly considered as materials of bipolar plates in fuel cells, oxide layers formed on the metal surface have excellent corrosion resistance. In this research, the electrochemical characteristics of 6061-T6 aluminum alloy and Inconel 600 were investigated with chloride concentrations in an acid environment that simulated the cathode condition of the PEMFC. After potentiodynamic polarization experiments, Tafel analysis and surface analysis were performed. Inconel 600 presented remarkably good corrosion resistance under all test conditions. The corrosion current density of 6061-T6 aluminum alloy was significantly higher than that of Inconel 600 under all test conditions. Also, 6061-T6 aluminum alloy and Inconel 600 presented uniform corrosion and intergranular corrosion, respectively. The Ni, Cr, and Fe, which are the main chemical compositions of Inconel 600, are higher than Al in the electromotive force series. And a double oxide film of NiO-Cr2O3, which is more stable than Al2O3, is formed. Thus, the corrosion resistance of Inconel 600 is better.

Effect of Si Addition on the Corrosion Resistance of CrN Coatings in a Deaerated $3.5wt.\%$ NaCl Solution (탈기된 $3.5wt.\%$ NaCl 용액 환경에서의 스테인리스 강에 증착된 CrN 박막의 Si 첨가에 따른 영향 평가)

  • Kim Woo-Jung;Choi Yoon-Seok;Kim Jung-Gu;Lee Ho-Young;Han Jeon-Gun
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.137-143
    • /
    • 2005
  • CrSiN coatings of stepwise changing Si concentration were deposited on stainless steel by closed field unbalanced magnetron sputtering (CFUBM) system. Microstructure of the films due to the Si concentration is measured by XRD. The corrosion behavior of CrSiN coatings in deaerated $3.5\%$ NaCl solution was investigated by potentiodynamic test, electrochemical impedance spectroscopy (EIS) and surface analyses. The microstructure of CrSiN film depends on the Si concentration. When Si/(Cr+si) was under $11.7\%$, preferred orientation is defined at CrN(220), CrN(311) and $Cr_2N(111).$ The results of potentiodynamic polarization tests showed that the corrosion current density and porosity decreased with increasing Si/(Cr+si) ratio. EIS measurements showed that the corrosion resistance of Si-bearing CrN was improved by phase transformation of the film, which leads to increase of pore resistance and charge transfer resistance. At the Si(Cr+si) ratio of 20, the Si-bearing CrN possesses the best corrosion resistance due to the highest pore resistance and charge transfer resistance.

A Study on Local Conditions in Amine Solutions Influencing on Corrosion of Carbon Steel (탄소강의 부식에 미치는 아민계 용액의 조건에 관한 연구)

  • Gwon, Hyuk-Jun;Ahn, Hyun-Kyoung;Song, Chan-Ho;Park, Byung-Gi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2879-2887
    • /
    • 2011
  • This research is aimed for the better understanding of corrosion behavior of carbon steel in ETA or $NH_3$ solution at high temperature. To minimize the corrosion it is important to select proper pH control agent(s), which also let it maintain basic or reductive environment inside the steel pipe. This work will provide the practical guideline which can be applied to the nuclear power plant for developing the life extension method of carbon steel. Experiments were carried out by measuring the corrosion rate using the potentiodynamic polarization curve of carbon steel in ETA and NH3 at different temperatures. The corrosion rate was estimated by using the Tafel curve measured under various test conditions: i) $NH_3$ is less than ETA as a pH agent. ii) the corrosion was reduced at high pH, and iii) the corrosion was maximum in the temperature range of $150\sim200^{\circ}C$.

The electrochemical properties of PVD-grown WC-( $Ti_{1-x}$A $I_{x}$)N multiplayer films in a 3.5% NaCl solution

  • Ahn, S.H.;Yoo, J.H.;Kim, J.G.;Lee, H.Y.;Han, J.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.435-444
    • /
    • 2001
  • WC-( $Ti_{1-x}$ A $l_{x}$) N coatings of constant changing Al concentration were deposited on S45C substrates by high-ionization sputtered PVD method. The Al concentration could be controlled by using evaporation source for Al and fixing the evaporation rate of the metals (i.e, WC- $Ti_{0.86}$A $l_{0.14}$N, WC- $Ti_{0.72}$A $l_{0.28}$N, and WC- $Ti_{0.58}$A $l_{0.42}$N). The corrosion behavior of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings in a deaerated 3.5% NaCl solution was investigated by electrochemical corrosion tests and surface analyses. The measured galvanic corrosion currents between coating and substrate indicated that WC- $Ti_{0.72}$A $l_{0.28}$N coating showed the best resistance of the coating tested. The results of potentiodynamic polarization tests showed that the WC- $Ti_{0.72}$A $l_{0.28}$N coating deposited with 32W/c $m^2$ of Al target revealed higher corrosion resistance. This indicated that the WC- $Ti_{0.72}$A $l_{0.28}$N coating is effective in improving corrosion resistance. In EIS, the WC- $Ti_{0.72}$A $l_{0.28}$N coating showed one time constant loop and increased a polarization resistance of coating ( $R_{coat}$) relative to other samples. Compositional variations of WC-( $Ti_{1-x}$ A $l_{x}$)N coatings were analyzed by EDS and XRD analysis was performed to evaluate the crystal structure and compounds formation behavior. Surface morphologies of the films were observed using SEM and AFM. Scratch test was performed to measure film adhesion strength.strength. adhesion strength.strength.

  • PDF

Tribological Behavior of Multilayered WC-Ti1-xAlxN Coatings Deposited by Cathodic Arc Deposition Process on High Speed Steel

  • Kim, Jung Gu;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.52-61
    • /
    • 2006
  • Recently, much of the current development in surface modification engineering are focused on multilayered coatings. Multilayered coatings have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N$, $WC-Ti_{0.53}Al_{0.47}N$, $WC-Ti_{0.5}Al_{0.5}N$ and $WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behavior. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec, 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball ($H_R=66$) having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$ coatings with increasing of Al concentration. $WC-Ti_{0.43}Al_{0.57}N$ coating with the lower surface roughness and porosity with good adhesion enhanced wear resistance.

Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF

Analysis of Mechanical Properties with Addition of Zr in Al 2013-T8 Alloy for Galvanizing Equipment (Al 2013-T8 합금에서 Zr 첨가에 따른 기계적 특성 분석)

  • Baek, Min-Sook;Cho, Sa-Hyeon;Park, Man-Bok;Yoon, Dong-Joo;Heo, Ki-Bok
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.444-448
    • /
    • 2016
  • In this study, the recently developed Al 2013 alloy was T8-tempered and, to improve the strength and corrosion-resistance, slight amounts of Zr of 0.2 wt% and 0.5 wt%, respectively, were added and the mechanical properties were analyzed. For microstructure and precipitate analysis, OM observation, XRD analysis, and TEM analysis were performed, and for the mechanical property analysis, hardness and tensile strength tests were done. Also, in order to determine the corrosion rate according to the Zr content, a potentiodynamic polarization test was performed and the properties were compared and analyzed. The size of the precipitate varied with the content of Zr and was finest at Zr content of 0.2 wt%; it grew larger at 0.5 wt%, at which point the hardness value accordingly showed the same trend. On the other hand, as calculated from the aspect of chemical bonding among atoms, it was confirmed that the tensile strength and the corrosion-resistance increased with the same trend.

Galvanic Sensor System for Detecting the Corrosion Damage of the Steel in Concrete

  • Kim, Jung-Gu;Park, Zin-Taek;Yoo, Ji-Hong;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.118-126
    • /
    • 2004
  • The correlation between sensor output and corrosion rate of reinforcing steel was evaluated by laboratory electrochemical tests in saturated $Ca(OH)_2$ with 3.5 wt.% NaCl and confirmed in concrete environment. In this paper, two types of electrochemical probes were developed: galvanic cells containing of steel/copper and steel/stainless steel couples. Potentiodynamic test, weight loss measurement, monitoring of open-circuit potential, linear polarization resistance (LPR) measurement and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of steel bar embedded in concrete. Also, galvanic current measurements were conducted to obtain the charge of sensor embedded in concrete. In this study, steel/copper and steel/stainless steel sensors showed a good correlation in simulated concrete solution between sensor output and corrosion rate of steel bar. However, there was no linear relationship between steel/stainless steel sensor output and corrosion rate of steel bar in concrete environment due to the low galvanic current output. Thus, steel/copper sensor is a reliable corrosion monitoring sensor system which can detect corrosion rate of reinforcing steel in concrete structures.

Investigation of Corrosion Characteristics with Zn, PTFE Hybrid Coating for SS400 in Sea Water (Zn, PTFE 복합 코팅에 의한 SS400 강의 해수 부식 특성 변화 연구)

  • Han, Min Su;Prak, Jae Cheul;Jang, Seok Ki;Kim, Seong Jong
    • Corrosion Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.205-211
    • /
    • 2011
  • The severe corrosion environment makes the steel product lifecycle short while Cu-alloys with anti-corrosion characteristic used in sea water are too expensive. This study shows that the Cu-alloy(Cu-37.25% Zn-0.67%Al) used in sea water environment can be superseded by SS400 with various coating process, evaluating electrochemical characteristics. Three coating processes were applied to SS400 such as PTFE + Zn coaing, Zn + PTFE coating and only Zn electrogalvanizing coaing. Various electrochemical experiments such as open circuit potential measurments, potentiodynamic polarization tests and analyses of Tafel constants. Mechanical properties were also measured by tensile test and hardness tests. As a result, Zn + PTFE coating for SS400 steel presented the excellent anti-corrosion characteristic in sea water.