• Title/Summary/Keyword: Potentiodynamic polarization test

Search Result 131, Processing Time 0.027 seconds

Microstructure and Corrosion Resistance of Ti-15Sn-4Nb Alloy with Hf Adding Element (Hf가 첨가된 생체용 Ti-15Sn-4Nb 합금의 미세조직 및 내식성)

  • Lee, Doh-Jae;Lee, Kyung-Ku;Cho, Kyu-Zong;Yoon, Taek-Rim;Park, Hyo-Byung
    • Journal of Technologic Dentistry
    • /
    • v.23 no.1
    • /
    • pp.55-64
    • /
    • 2001
  • This study is focusing on the improvement of problems of Ti-6Al-4V alloy. A new Ti based alloy, Ti-15Sn-4Nb, have designed to examine any possibility of improving the mechanical properties and biocompatibility. Specimens of Ti alloys were melted in vacuum arc furnace and homogenized at $100^{\circ}C$ for 24h. All specimens were solution treated at $812^{\circ}C$ and aged at $500^{\circ}C$ for 10h. The corrosion resistance of Ti alloys was evaluated by potentiodynamic polarization test and immersion test inl%Lactic acid solutions. Ti-15Sn-4Nb system alloys showed Widmanstatten microstructure after solution treatment which is typical microstructure of ${\alpha}+{\beta}$ type Ti alloys. Analysing the corrosion resistance of Ti alloys, it was concluded that the passive films of Ti-15Sn-4Nb system alloys are more stable than that of Ti-6Al-4V alloys. Also, the corrosion resistance of Ti-15Sn-4Nb system alloys was improved with adding elements, Hf. It was analysed that the passive film of the Ti-15Sn-4Nb alloy which was formed in air atmosphere was consisted of TiO2, SnO and NbO through X-ray photoelectron spectroscopy(XPS) analysis.

  • PDF

Synthesis of graphene and its application to thermal and surface modification (그래핀의 합성과 열전도 및 표면 특성 개선 활용)

  • Kim, Yong-You;Jang, Hee-Jin;Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.4
    • /
    • pp.549-554
    • /
    • 2013
  • With the synthesis of graphene on Cu using CVD, it was tried to show the behavior of graphene growth depending on the size and orientation of Cu grain. It was found out that even under the same temperature and pressure the use of different gases influences on the diffusion rate of Cu. As compared to Ar gas, Cu grain growing bigger under $H_2$ and $CH_4$ was resulted in bigger graphene grain. Corrosion resistance was evaluated by potentiodynamic polarization test in room temperature and found out that the graphene on Cu was more stable in order of 10 than pure Cu due to the chemical stability of graphene. The future work of this research will focus on the synthesis of graphene having no defects including grain boundaries, and its engineering use.

Influence of Coating Defect Ratio on Tribological Behavior Determined by Electrochemical Techniques (전기화학적 분석을 통해 산출된 코팅 결함율이 트라이볼로지적 특성에 미치는 영향 평가)

  • Lee Young-Ze;Kim Woo-Jung;Ahn Seung-Ho;Kim Ho-Gun;Kim Jung-Gu;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.20 no.6
    • /
    • pp.306-313
    • /
    • 2004
  • Many of the current development in surface modification engineering are focused on multilayered coatings, which have the potential to improve the tribological properties. Four different multilayered coatings were deposited on AISI D2 steel in this study. The prepared samples are designed as $WC-Ti_{0.6}Al_{0.4}N,\;WC-Ti_{0.53}Al_{0.47}N,\;WC-Ti_{0.5}Al_{0.5}N\;and\;WC-Ti_{0.43}Al_{0.57}N$. The multilayered coatings were investigated with respect to coating surface and cross-sectional morphology, roughness, adhesion, hardness, porosity and tribological behaviors. Especially, wear tests of four multilayered coatings were performed by using a ball-on-disc configuration with a linear sliding speed of 0.017 m/sec and a normal load of 5.38 N load. The tests were carried out at room temperature in air by employing AISI 52100 steel ball $(H_R\;=\;66) $ having a diameter of 10 mm. The surface morphology, and topography of the wear scars of samples and balls have been determined by using scanning electron spectroscopy (SEM). Also, wear mechanism was determined by using SEM coupled with energy-dispersive spectroscopy (EDS). Results have showed an improved wear resistance of the $WC-Ti_{1-x}Al_xN$coatings with increasing of Al (aluminum) concentration.

Electrochemical characteristics of Ca, P, Sr, and Si Ions from PEO-treated Ti-6Al-4V Alloy Surface

  • Yu, Ji-Min;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.154-154
    • /
    • 2017
  • Ti-6Al-4V alloys are widely used as metal-lic biomaterials in dentistry and orthopedics due to its excellent biocompatibility and me-chanical properties. However, because of low biological activity, it is difficult to form bone growth directly on the surface of titanium implants. For this reason, surface treatment of plasma electrolytic oxidation(PEO) was used for dental implants. To enhance bioac-tivity on the surface, strontium(Sr) and sili-con(Si) ions can be added to PEO treated sur-face in the electrolyte containing these ions. The presence of Sr in the coating enhances osteoblast activity and differentiation, where-as it inhibits osteoclast production and prolif-eration. And Si has been found to be essen-tial for normal bone, cartilage growth, and development. In this study, electrochemical characteristics of Ca, P, Sr, and Si ions from PEO-treated Ti-6Al-4V alloy surface was re-searched using various experimental instruments. DC power is used and Ti-6Al-4V al-loy was subjected to a voltage of 280 V for 3 minutes in the electrolyte containing 5, 10, 20M% Sr ion and 5M% Si ion. The morphol-ogies of PEO-treated Ti-6Al-4V alloy by electrochemical anodization were examined by field-emission scanning electron micro-scopes (FE-SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD) and corrosion analysis using AC impedance and potentiodynamic polarization test in 0.9% NaCl solution at similar body tempera-ture using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to + 2000mV.

  • PDF

Electrochemical Characteristics of Osteoblast Cultured Ti-Ta Alloy for Dental Implant (골아세포가 배양된 치과 임플란트용 Ti-Ta합금의 전기화학적 특성)

  • Kim, W.G.;Choe, H.C.;Ko, Y.M.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.2
    • /
    • pp.69-75
    • /
    • 2008
  • Electrochemical behaviors of surface modified and MC3T3-E1 cell cultured Ti-30Ta alloys have been investigated using various electrochemical methods. The Ti alloys containing Ta were melted by using a vacuum furnace and then homogenized for 6 hrs at $1000^{\circ}C$. MC3T3-E1 cell culture was performed with MC3T3-E1 mouse osteoblasts for 2 days. The microstructures and corrosion resistance were measured using FE-SEM, XRD, EIS and potentiodynamic test in artificial saliva solution at $36.5{\pm}1^{\circ}C$. Ti-Ta alloy showed the martensite structure of ${\alpha}+{\beta}$ phase and micro-structure was changed from lamellar structure to needle-like structure as Ta content increased. Corrosion resistance increased as Ta content increased. Corrosion resistance of cell cultured Ti-Ta alloy increased predominantly in compared with non cell cultured Ti- Ta alloy due to inhibition of the dissolution of metal ion by covered cell. $R_p$ value of MC3T3-E1 cell cultured Ti-40 Ta alloy showed $1.60{\times}10^6{\Omega}cm^2$ which was higher than those of other Ti alloy. Polarization resistance of cell-cultured Ti-Ta alloy increased in compared with non-cell cultured Ti alloy.

Effects of Zn2+ concentration and pH on the formation and growth of zinc phosphate conversion coatings on AZ31 magnesium alloy

  • Van Phuong, Nguyen;Lee, Kyuhwan;Lee, Sangyeol;Moon, Sungmo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.62-62
    • /
    • 2013
  • Magnesium alloys exhibit many attractive properties such as low density, high strength/weight ratio, high thermal conductivity, very good electromagnetic features and good recyclability. However, most commercial magnesium alloys require protective coatings because of their poor corrosion resistance. Attempts have been made to improve the corrosion resistance of the Mg alloys by surface treatments, such as chemical conversion coatings, anodizing, plating and metal coatings. Among them, chemical conversion coatings are regarded as one of the most effective and cheapest ways to prevent corrosion of Mg alloys. In this study, the effects of various $Zn^{2+}$ concentrations and pH levels on the formation of zinc phosphate conversion coatings (ZPCCs) on AZ31 magnesium alloy were investigated, and corrosion resistances of the coated samples were evaluated by immersion test and potentiodynamic polarization experiment. The corrosion resistance of the coated AZ31 samples was found to increase with increasing $Zn^{2+}$ concentration and the lowest corrosion rate was obtained for the samples coated at pH of 3.07, independent of $Zn^{2+}$ concentration. The best coatings on AZ31 were obtained at [$Zn^{2+}$] = 0.068 M and pH 3.07. At the conditions of [$Zn^{2+}$] = 0.068 M and pH 3.07, the formation and growth processes of ZPCCs on AZ31 Mg alloy are divided into four stages: formation of a dense layer, precipitation of fine crystals on the dense layer, growths of the inner and outer layers, and reorganization of outer crystalline layer.

  • PDF

Effect of ALD-Al2O3 Passivation Layer on the Corrosion Properties of CrAlSiN Coatings (ALD-Al2O3 보호층이 적용된 CrAlSiN 코팅막의 내부식성 특성에 관한 연구)

  • Wan, Zhixin;Lee, Woo-Jae;Jang, Kyung Su;Choi, Hyun-Jin;Kwon, Se Hun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.339-344
    • /
    • 2017
  • Highly corrosion resistance performance of CrAlSiN coatings were obtained by applying ultrathin $Al_2O_3$ thin films using atomic layer deposition (ALD) method. CrAlSiN coatings were prepared on Cr adhesion layer/SUS304 substrates by a hybrid coating system of arc ion plating and high power impulse magnetron sputtering (HiPIMS) method. And, ultrathin $Al_2O_3$ passivation layer was deposited on the CrAlSiN/Cr adhesion layer/SUS304 sample to protect CrAlSiN coatings by encapsulating the whole surface defects of coating using ALD. Here, the high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray spectrometry (EDX) analysis revealed that the ALD $Al_2O_3$ thin films uniformly covered the inner and outer surface of CrAlSiN coatings. Also, the potentiodynamic and potentiostatic polarization test revealed that the corrosion protection properties of CrAlSiN coatings/Cr/SUS304 sample was greatly improved by ALD encapsulation with 50 nm-thick $Al_2O_3$ thin films, which implies that ALD-$Al_2O_3$ passivation layer can be used as an effect barrier layer of corrosion.

Corrosion Behavior of Boiler Tube under Circulation Water Conditions in District Heating System (지역난방 시스템의 순환수에 따른 보일러 튜브의 부식 특성)

  • Hong, Minki;Cho, Jeongmin;Song, Min Ji;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.287-291
    • /
    • 2018
  • In this study, corrosion behavior of a SA178-A alloy used in the boiler tube of a district heating system was investigated in different environments where it was exposed to pure water, district heating (DH) water, and filtered district heating (FDH) water. After the corrosion test, the surface morphology was examined for observation of the number of pitting sites and pitting area fraction, using a scanning electron microscope. The DH water and FDH water conditions resulted in a lower corrosion potential and pitting potential, and revealed a significantly higher corrosion rate than the pure water condition. The pitting sites in the DH water (pH 9.6) were approximately eighteen times larger than those in the pure water (pH 9.6). Compared to the DH water, the corrosion potential became more noble in the FDH water condition, where iron ions were reduced through filtration. However, the corrosion rate increased in the FDH water due to an increased concentration of chloride ions, which deteriorated the stability of passive film.

Effects of HA/TiN Coating on the Electrochemical Characteristics of Ti-Ta-Zr Alloys (Ti-Ta-Zr합금의 전기화학적 특성에 미치는 HA/TiN 코팅의 영향)

  • Oh, Mi-Young;Kim, Won-Gi;Choe, Han-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.691-699
    • /
    • 2008
  • Electrochemical characteristics of Ti-30Ta-xZr alloys coated with HA/TiN by using magnetron sputtering method were studied. The Ti-30Ta containing Zr(3, 7, 10 and 15wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and coating, and then coated with HA/TiN, respectively, by using DC and RF-magnetron sputtering method. The analyses of coated surface and coated layer were carried out by using optical microscope(OM), field emission scanning electron microscope(FE-SEM) and X-ray diffractometer(XRD). The electrochemical characteristics were examined using potentiodynamic (-1,500 mV~ + 2,000 mV) and A.C. impedance spectroscopy(100 kHz ~ 10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The microstructure of homogenized Ti-30Ta-xZr alloys showed needle-like structure. In case of homogenized Ti-30Ta-xZr alloys, a-peak was increased with increasing Zr content. The thickness of TiN and HA coated layer showed 400 nm and 100 nm, respectively. The corrosion resistance of HA/TiN-coated Ti-30Ta-xZr alloys were higher than that of the non-coated Ti-30TaxZr alloys, whic hindicate better protective effect. The polarization resistance($R_p$) value of HA/TiN coated Ti-30Ta-xZr alloys showed $8.40{\times}10^5{\Omega}cm^2$ which was higher than that of non-coated Ti-30Ta-xZr alloys.

Improvement of Corrosion Resistance of 316L Stainless Steel by Gas Nitriding (가스 질화를 통한 316L스테인리스강의 내식성 개선)

  • Hyunbin Jo;Serim Park;Jisu Kim;Junghoon Lee
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.1
    • /
    • pp.8-14
    • /
    • 2024
  • Austenitic stainless steel 316L has been used a lot of applications because of its high corrosion resistance and formability. In addition, copper brazing is employed to create complex shape of 316L stainless steel for various engineering parts. In such system, copper-based filler metals make galvanic cell at metal/filler metal interface, and it accelerates corrosion of stainless steel. Furthermore, Cu-rich region formed by diffused copper in austenitic stainless steel can promote a pitting corrosion. In this study, we used an ammonia (NH3) gas to nitride the 316L stainless steel for improving the corrosion resistance. The thickness of the nitride (nitrogen high) layer increased with the treatment temperature, and the surface hardness also increased. The potentiodynamic polarization test showed the improvement of corrosion resistance of 316L stainless steel by enhancing the passivation on nitride layer. However, in case of high temperature nitriding, a chromium nitride was formed and its fraction increased, so that the corrosion resistance was decreased compared to the intact 316L stainless steel.