• Title/Summary/Keyword: Potential flow analysis

Search Result 796, Processing Time 0.023 seconds

Induction of Apoptosis by Methanol Extract of Endlicheria anomala in Human Lung and Liver Cancer Cells (Endlicheria anomala 메탄올 추출물에 의한 인체 폐암세포주와 간암세포주의 자가사멸 유도)

  • Park, Hyun-jin;Jin, Soojung;Oh, You Na;Kim, Byung Woo;Kwon, Hyun Ju
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.441-449
    • /
    • 2015
  • Endlicheria anomala, a neotropical plant, is found in northern South America and the Amazon region. It is traditionally used to remove poisons and cure gangrene. According to recent data, this plant has diverse biological properties such as anti-oxidative, anti-inflammatory and anti-melanogenic properties. However, the anti-cancer effect of E. anomala and its molecular mechanisms remain unclear. In this study, we examined the anti-cancer effect and the active mechanism of methanol extract of E. anomala (MEEA) in human lung adenocarcinoma cells (A549) and human liver cancer cells (HepG2). Our data revealed that MEEA showed cytotoxic activity in a dose-dependent manner and induced apoptosis both in A549 and HepG2 cells. We verified evidences of apoptosis via formation of chromatin condensation, apoptotic body and accumulation of cells in the subG1 phase. Following observed apoptosis-related phenomena, we found that the induction of apoptosis by MEEA was associated with the increase of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 (WAF1/CIP1) expression. Furthermore, MEEA-induced apoptosis was characterized with proteolytic activation of caspase-3, degradation of poly ADP ribose polymerase (PARP), and up-regulation of pro-apoptotic Bax expression. Taken together, these findings indicate that MEEA may have potential cancer therapeutic utility in A549 and HepG2 cells.

Protective Effect of Prunella spica Extracts against H2O2-Induced Cytotoxicity in PC12 Cells (Hydrogen peroxide가 유도하는 세포독성으로부터 PC12 세포를 보호하는 하고초(Prunella spica) 추출물의 영향)

  • Kim, Hyun-Jung;Lee, Jeung-Min;Moon, Seong-Hee;Park, Hae-Ryong
    • Journal of Life Science
    • /
    • v.20 no.7
    • /
    • pp.1121-1126
    • /
    • 2010
  • The oxidative stress induced by reactive oxygen species (ROS) may play an important role in the pathogenesis of neurodegenerative diseases. In this study, we investigated the neuroprotective effects of methanolic extracts of Prunella Spica (PSE) against $H_2O_2$-induced oxidative stress in PC12 cells. The cells exposed to $H_2O_2$-induced oxidative stress were treated with various concentrations of PSE; this treatment resulted in the induction of a dose-dependent protective effect, which was evidenced by the results of MTT reduction assay, lactate dehydrogenase (LDH) release assay, morphological assay, and colony-formation assay. Interestingly, we also observed reduction of apoptotic bodies in the Hoechst staining and flow cytometric analysis. These data show that apoptosis was significantly suppressed in the PC12 cells that were exposed to $H_2O_2$-induced oxidative stress and treated with PSE. These results suggest that Prunella Spica could be a new potential protective agent against $H_2O_2$-induced oxidative stress.

Analysis of EDCs by Mass Spectrometry and their Removal by Membrane Filtrations (질량분석법에 의한 내분비계 장애물질의 분석과 막 여과에 의한 제거)

  • Kim Tae-Uk;Yeon Kyeong-Ho;Cho Jaeweon;Moon Seung-Hyeon
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.297-309
    • /
    • 2005
  • As a number of potential endocrine disrupting compounds (EDCs) are released into the environment, recently growing attention has been drawn to them. Therefore sensitive and reliable analytical methods are essential to monitor those compounds. In this study, complementary CC-MS and LC-MS were employed to analyze the endocrine disrupters, and the results of two methods were compared for di(2-ethylhexyl)phthalate (DEHP), benzylbutylphthalate (BBP), pentachlorophenol (PCP), and 4,4'-Isopropylidenediphenol (Bisphenol-A, or BPA). The results indicate that it was possible to lower the detection limits of EDCs by LC-MS. Also, LC-MS enabled to identify the EDCs as almost intact molecules. Furthermore, this study presented a nanofiltration membrane (MWCO 250) and a ultrafiltration membrane (MWCO 1,000) filtration system as methods far removing EDCs from drinking water containing $\gamma$-BHC, p,p'-DDE, BBP, p,p'-DDT, DEHP, PCP, and BPA. Cross-flow type nanofiltrations showed $100\%$ removal of EDCs, and the result implies that MWCO 250 nanofilter was sufficient for treatment of EDCs. The ratio of permeate flux to mass transfer coefficient of nanofiltration, high flux ultrafiltration, and low flux ultrafiltration with ultrapure water were 0.67, 3.4, and 0.44, respectively. It was found that nanofiltration and low flux ultrafiltration were operated at a diffusion dominant condition, and the high flux ultrafiltration was operated at a convection dominant condition. Furthermore, a diffusion dominant process attained reasonable rejection of EDCs. The removal in the ultrafiltration was depending on the molecular weight of an EDC, and the filtration was governed by diffusion-dominant hydrodynamic conditions.

Development of a shot noise process based rainfall-runoff model for urban flood warning system (도시홍수예경보를 위한 shot noise process 기반 강우-유출 모형 개발)

  • Kang, Minseok;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.1
    • /
    • pp.19-33
    • /
    • 2018
  • This study proposed a rainfall-runoff model for the purpose of real-time flood warning in urban basins. The proposed model was based on the shot noise process, which is expressed as a sum of shot noises determined independently with the peak value, decay parameter and time delay of each sub-basin. The proposed model was different from other rainfall-runoff models from the point that the runoff from each sub-basin reaches the basin outlet independently. The model parameters can be easily determined by the empirical formulas for the concentration time and storage coefficient of a basin and those of the pipe flow. The proposed model was applied to the total of three rainfall events observed at the Jungdong, Guro 1 and Daerim 2 pumping stations to evaluate its applicability. Summarizing the results is as follows. (1) The unit response function of the proposed model, different from other rainfall-runoff models, has the same shape regardless of the rainfall duration. (2) The proposed model shows a convergent shape as the calculation time interval becomes smaller. As the proposed model was proposed to be applied to urban basins, one-minute of calculation time interval would be most appropriate. (3) Application of the one-minute unit response function to the observed rainfall events showed that the simulated runoff hydrographs were very similar to those observed. This result indicates that the proposed model has a good application potential for the rainfall-runoff analysis in urban basins.

Effect of essential oil from Coicis Semen (ECS) on proliferation of human hair dermal papilla cells (의이인의 정유 분획물이 모유두 세포의 성장에 미치는 영향)

  • Kim, Yoo-Jin;Seo, Kyung Hye;Jang, Gwi Young;Jung, Ji Wook;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.47-53
    • /
    • 2021
  • Objectives : Currently, the alopecia is one of the most emotionally stressful syndromes in human life. Human hair dermal papilla cells (HDPCs) play an essential role in controlling hair growth and in regulating hair cycle. We performed MTT assay, cell cycle, and western blot to determine the effects of essential oil from Coicis Semen (ECS) on hair growth in HDPCs. Methods : We monitored cell proliferations by MTT assay in HDPCs. After setting up the safe and effective concentration range to be treated ECS, cell cycle analysis was performed using flow cytometry. Also, the protein expression of hair growth-related factors such as insulin like growth factor-1 (IGF-1), Wnt, extracellular signal-regulated kinase (ERK), serine/threonine-specific protein kinase (Akt) in HDPCs was determined by western blot. Results : As results, cell proliferation was increased in ECS group compared to dimethyl sulfoxide (DMSO) group and minoxidil (MNXD) group. Cell number of ECS group was more decrease in sub G1 phase than cell number of DMSO group. Also, cell number of ECS group increased compared to cell number of DMSO group in G1 phase. Protein expression of ECS group was higher than protein expression of DMSO group on related hair growth factors (IGF-1, Wnt, ERK, Akt). Conclusion : As mentioned above, ECS increased cell proliferation and the protein expression of IGF-1, Wnt, ERK, and Akt. These results suggest that ECS could be used as a potential material for the treatment of alopecia by increasing the proliferation of HDPCs.

A Study on the Establishment of Design and Construction Process Standardization through Building BIM Application Case (건축물 BIM 적용사례를 통한 설계 및 시공프로세스 표준화 수립에 대한 연구)

  • Jeong, Hee-woong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.4
    • /
    • pp.347-358
    • /
    • 2022
  • In order to satisfy the extraction and use of information such as estimates and processes required in the design and construction stages of BIM, which is an expectation of overall construction operation for the design and construction stage of domestic buildings, it is insufficient to supply and apply mobile technologies or terminals. In this paper, standardization of BIM-based processes from the design stage to the construction stage is proposed as an efficient construction system method through mobile-based simulation and test-bed case analysis review. The current status and potential of BIM application were identified through theoretical review of BIM and case studies at home and abroad. In addition, the overall flow of the project and the direction of effective process construction were investigated through each process by 3D, 4D, and 5D execution stage and the role of each collaborator. 4D building process BIM simulation system using mobile was implemented by applying a visualization engine that simulates process information, object information connection module, and related object information. Therefore, it was possible to minimize the possibility of re-construction of the BIM design and construction process model through the visualization of 2D drawings based on the 3D model of the building and the review of errors and interferences in the drawings. In addition, in the implementation of simulation for each process of the construction process through mobile devices, it was possible to support construction progress and process management according to the optimal option selected by the user.

Predicting Carbon Dioxide Emissions of Incoming Traffic Flow at Signalized Intersections by Using Image Detector Data (영상검지자료를 활용한 신호교차로 접근차량의 탄소배출량 추정)

  • Taekyung Han;Joonho Ko;Daejin Kim;Jonghan Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.115-131
    • /
    • 2022
  • Carbon dioxide (CO2) emissions from the transportation sector in South Korea accounts for 16.5% of all CO2 emissions, and road transportation accounts for 96.5% of this sector's emissions in South Korea. Hence, constant research is being carried out on methods to reduce CO2 emissions from this sector. With the emerging use of smart crossings, attempts to monitor individual vehicles are increasing. Moreover, the potential commercial deployment of autonomous vehicles increases the possibility of obtaining individual vehicle data. As such, CO2 emission research was conducted at five signalized intersections in the Gangnam District, Seoul, using data such as vehicle type, speed, acceleration, etc., obtained from image detectors located at each intersection. The collected data were then applied to the MOtor Vehicle Emission Simulator (MOVES)-Matrix model-which was developed to obtain second-by-second vehicle activity data and analyze daily CO2 emissions from the studied intersections. After analyzing two large and three small intersections, the results indicated that 3.1 metric tons of CO2 were emitted per day at each intersection. This study reveals a new possibility of analyzing CO2 emissions using actual individual vehicle data using an improved analysis model. This study also emphasizes the importance of more accurate CO2 emission analyses.

A Study on the Optimal Operating Conditions for an Unreacted Hydrogen Oxidation-Heat Recovery System for the Safety of the Hydrogen Utilization Process (수소 활용공정 안전성 확보를 위한 미반응 수소 산화-열 회수 시스템의 운전 조건 최적화 연구)

  • Younghee Jang;Sung Su Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.307-312
    • /
    • 2023
  • In this study, a catalytic oxidation-heat recovery system was designed that can remove unreacted with a concentration of about 1% to 6% in the exhaust gas of hydrogen fuel cells and recover heat to ensure safety in the hydrogen economy. The safety system was devised by filling hydrogen oxidation catalysts at room temperature that can remove unreacted hydrogen without any energy source, and an exhaust-heat recovery device was integrated to efficiently recover the heat released from the oxidation reaction. Through CFD analysis, variations in pressure and fluid within the system were shown depending on the filling conditions of the hydrogen oxidation system. In addition, it was found that waste heat could be recovered by optimizing the temperature of the exhaust gas, flow rate, and pressure conditions within the heat recovery system and securing hot water above 40 ℃ by utilizing the exhaust gas oxidation heat source above 300 ℃. Through this study, it was possible to confirm the potential of utilizing hydrogen processes, which are applied in small to medium-sized systems such as hydrogen fuel cells, as a safety system by evaluating them at a pilot scale. Additionally, it could be a safety guideline for responding to unexpected hydrogen safety accidents through further pilot-scale studies.

Investigative Analysis of By-products from Lignocellulosic Biomass Combustion and Their Impact on Mortar Properties (목질계 바이오매스 연소부산물 분석과 모르타르 혼입 평가)

  • Jung, Young-Dong;Kim, Min-Soo;Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.663-671
    • /
    • 2023
  • This research experimentally evaluated the recyclability of four varieties of lignocellulosic fly ash(FA), a by-product from three power plants employing lignocellulosic biomass(Bio-SRF, wood pellets) as a fuel source. Comprehensive analyses were conducted on FA, encompassing both physical parameters (particle shape, size distribution, fineness, and density) and chemical properties(chemical composition and heavy metal content). Mortar test specimens, with FA mixing ratios ranging from 5 to 20%, were produced in compliance with KS L 5405 standards, and their flow and compressive strength were subsequently measured. The test results indicated that the four types of FA exhibited particle sizes approximately between 20~30㎛, densities around 2.3~2.5g/cm3, and a fineness range of 2,600~4,900cm2/g. The FA comprised approximately 50~90% of components such as SiO2, Al2O3, Fe2O3, and CaO, displaying characteristics akin to type-II and type-III FA of KS L 5405 standards, albeit with differences in chlorine and SiO2 content. From the mortar tests, it was observed that the compressive strength of the mortar ranged between 34~47MPa when the pellet combustion FA was mixed in proportions of 5~20%. FA, produced exclusively from the combustion of 100% lignocellulosic fuel, is assessed to possess high recyclability potential as a substitute for conventional admixtures.

20(S)-ginsenoside Rh2 ameliorates ATRA resistance in APL by modulating lactylation-driven METTL3

  • Siyu Cheng;Langqun Chen;Jiahui Ying;Ying Wang;Wenjuan Jiang;Qi Zhang;Hong Zhang;Jiahe Wang;Chen Wang;Huimin Wu;Jing Ye;Liang Zhang
    • Journal of Ginseng Research
    • /
    • v.48 no.3
    • /
    • pp.298-309
    • /
    • 2024
  • Background: 20(S)-ginsenoside Rh2(GRh2), an effective natural histone deacetylase inhibitor, can inhibit acute myeloid leukemia (AML) cell proliferation. Lactate regulated histone lactylation, which has different temporal dynamics from acetylation. However, whether the high level of lactylation modification that we first detected in acute promyelocytic leukemia (APL) is associated with all-trans retinoic acid (ATRA) resistance has not been reported. Furthermore, Whether GRh2 can regulate lactylation modification in ATRA-resistant APL remains unknown. Methods: Lactylation and METTL3 expression levels in ATRA-sensitive and ATRA-resistant APL cells were detected by Western blot analysis, qRT-PCR and CO-IP. Flow cytometry (FCM) and APL xenograft mouse models were used to determine the effect of METTL3 and GRh2 on ATRA-resistance. Results: Histone lactylation and METTL3 expression levels were considerably upregulated in ATRA-resistant APL cells. METTL3 was regulated by histone lactylation and direct lactylation modification. Overexpression of METTL3 promoted ATRA-resistance. GRh2 ameliorated ATRA-resistance by downregulated lactylation level and directly inhibiting METTL3. Conclusions: This study suggests that lactylation-modified METTL3 could provide a promising strategy for ameliorating ATRA-resistance in APL, and GRh2 could act as a potential lactylation-modified METTL3 inhibitor to ameliorate ATRA-resistance in APL.