• Title/Summary/Keyword: Potential flow analysis

Search Result 781, Processing Time 0.034 seconds

Stability analysis of gas-liquid interface using viscous potential flow (점성포텐셜유동을 이용한 이상유동장의 표면안정성 해석)

  • Kim, Hyung-Jun;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3033-3038
    • /
    • 2007
  • In this research, Rayleigh instability of gas-liquid flow in annular pipe is studied in film boiling using viscous potential flow. Viscous potential flow is a kind of approximation of gas-liquid interface considering velocity field as potential including viscosity. A dispersion relation is obtained including the effect of heat and mass transfer and viscosity. New expression for dispersion relation in film boiling and critical wave number is obtained. Viscosity and heat and mass transfer have a stabilizing effect on instability and its effect appears in maximum growth rate and critical wave number. And the existence of marginal stability region is shown.

  • PDF

Passenger Flow Analysis at Transit Connecting Path (철도 환승 연결로에서의 여객 유동 해석)

  • Nam, Seongwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.415-420
    • /
    • 2020
  • Crowd flows occur in metropolitan railway transit stations, terminals, multiple buildings, and stadiums and are important in ensuring the safety as well as smooth flow of pedestrians in these facilities. In this study, the author developed a new computational analysis method for crowd flow dynamics and applied it to models of transit connecting paths. Using the analysis method, the potential value of the exit was assigned the smallest value, and the potential value of the surrounding grids gradually increased to form the overall potential map. A pathline map was then constructed by determining the direction vector from the grid with large potential value to the grid and small potential. These pathlines indicate basic routes of passenger flow. In all models of the analysis object, the pedestrians did not move to the first predicted shortest path but instead moved using alternative paths that changed depending on the situation. Even in bottlenecks in which pedestrians in both directions encountered each other, walking became much smoother if the entry time difference was dispersed. The results of the analysis show that a method for reducing congestion could be developed through software analysis such as passenger flow analysis without requiring hardware improvement work at the railway station.

Predicting aerodynamic characteristics of two-dimensional automobile shapes in ground proximity using an iterative viscous-potential flow technique (점성-비점성 유동 반복계산 방법을 이용한 2차원 자동차모형의 공력 특성 예측)

  • 최도형;최철진
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.52-61
    • /
    • 1986
  • An iterative viscous-potential flow procedure has been developed and used to predict aerodynamic characteristics of automobiles in ground proximity. The method is capable of predicting the effects of separated flows. The viscous-potential flow iteration procedure provides the connection between potential flow, boundary layer and wake modules. The separated wake is modeled in the potential flow analysis by thin sheets across which exists a jump in velocity potential. The ground effect is properly accounted for by placing a body image in the potential flow calculation. The agreement between theory and experiment is good and, thus, demonstrates that the method can be used in the preliminary design stage.

  • PDF

Shape Design Sensitivity Analysis of Supercavitating Flow Problem (초공동(超空洞) 유동 문제의 형상 설계민감도 해석)

  • Choi, Joo-Ho;Kwak, Hyun-Gu;Grandhi, R.V.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1320-1327
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-to-use features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for the sensitivity analysis and optimization procedure are also addressed in this flow problem.

Shape Design Sensitivity Analysis of Supercavitating Flow Problem (초공동(超空洞) 유동 문제의 형상 설계민감도 해석)

  • Choi, J.H.;Gwak, H.G.;Grandhi, R.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1047-1052
    • /
    • 2004
  • An efficient boundary-based technique is developed for addressing shape design sensitivity analysis in supercavitating flow problem. An analytical sensitivity formula in the form of a boundary integral is derived based on the continuum formulation for a general functional defined in potential flow problems. The formula, which is expressed in terms of the boundary solutions and shape variation vectors, can be conveniently used for gradient computation in a variety of shape design in potential flow problems. While the sensitivity can be calculated independent of the analysis means, such as the finite element method (FEM) or the boundary element method (BEM), the FEM is used for the analysis in this study because of its popularity and easy-touse features. The advantage of using a boundary-based method is that the shape variation vectors are needed only on the boundary, not over the whole domain. The boundary shape variation vectors are conveniently computed by using finite perturbations of the shape geometry instead of complex analytical differentiation of the geometry functions. The supercavitating flow problem is chosen to illustrate the efficiency of the proposed methodology. Implementation issues for and optimization procedure are addressed in this flow problem.

  • PDF

Performance Analysis of Multiple Wave Energy Converters due to Rotor Spacing

  • Poguluri, Sunny Kumar;Kim, Dongeun;Ko, Haeng Sik;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.229-237
    • /
    • 2021
  • A numerical hydrodynamic performance analysis of the pitch-type multibody wave energy converter (WEC) is carried out based on both linear potential flow theory and computational fluid dynamics (CFD) in the unidirectional wave condition. In the present study, Salter's duck (rotor) is chosen for the analysis. The basic concept of the WEC rotor, which nods when the pressure-induced motions are in phase, is that it converts the kinetic and potential energies of the wave into rotational mechanical energy with the proper power-take-off system. This energy is converted to useful electric energy. The analysis is carried out using three WEC rotors. A multibody analysis using linear potential flow theory is performed using WAMIT (three-dimensional diffraction/radiation potential analysis program), and a CFD analysis is performed by placing three WEC rotors in a numerical wave tank. In particular, the spacing between the three rotors is set to 0.8, 1, and 1.2 times the rotor width, and the hydrodynamic interaction between adjacent rotors is checked. Finally, it is confirmed that the dynamic performance of the rotors slightly changes, but the difference due to the spacing is not noticeable. In addition, the CFD analysis shows a lateral flow phenomenon that cannot be confirmed by linear potential theory, and it is confirmed that the CFD analysis is necessary for the motion analysis of the rotor.

Two-Dimensional Analysis of Unsteady Flow Through One Stage of Axial Turbine (II) (1단 축류 터빈의 비정상 내부유동특성에 관한 2차원 해석 (II))

  • Park, Jun-Young;Um, In-Sik;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1518-1526
    • /
    • 2001
  • In this paper, the mechanism of unsteady potential interaction and wake interaction in one stage axial turbine is numerically investigated at design point in two-dimensional viewpoint. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting (FVS) and Cubic spline interpolation is applied on zonal interface between stator and rotor. The inviscid analysis is used to embody the influence of potential interaction only and viscous analysis is used to embody the influences of both potential interaction and wake interaction at the same time. The potential-flow disturbance from the stator into a rotor passage and the periodic blockage effect of rotor produce the unsteady pressure on the blade surface in inviscid analysis. After the wake is cut by rotor, two counterrotating votical patterns flanking the wake centerline in the passage are generated. So, these phenomena magnify the unsteady pressure in viscous analysis than that in inviscid analysis. The resulting unsteady forces on the rotor, generated by the combined interaction of the two effects by potential and wake interaction, are discussed.

Development of Wave and Viscous Flow Analysis System for Computational Evaluation of Hull Forms

  • Kim, Wu-Joan;Kim, Do-Hyun;Van, Suak-Ho
    • Journal of Ship and Ocean Technology
    • /
    • v.4 no.3
    • /
    • pp.33-45
    • /
    • 2000
  • A computational system for wave and viscous flow analysis (WAVIS) has been developed. The system includes a pre-processor, flow solvers and a post-processor. The pre-processor is composed of full form presentation, surface mesh and field grid generation. The flow solvers are for potential and viscous flow calculation. The post-processor has graphic utility for result analysis. All the programs are integrated in a GUI-launcher package. To validate the developed CFD programs of WAVIS, the calculated results for modern commercial hull forms are compared with measurements. It is found that the results from WAVIS are in good agreement with the experimental data, illustrating the accuracy of the numerical methods employed for WAVIS.

  • PDF

Numerical Evaluation of 2nd Derivatives of the Potential in the Panel method for the Unsteady Potential Flow Problem (비정상 포텐셜 유동의 패널법 해석에서 포텐셜의 2차 미분값의 수치계산)

  • 양진호;전호환
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.41-45
    • /
    • 2000
  • In solving the unsteady potential flow problem of the ship in waves with the panel method, in general one can consider the basic flow as the free stream or double body solution. For the double body solution, the body boundary condition has the 2nd derivatives of the velocity potential. Low order panel methods are known to suffer from the significant error in the 2nd derivatives computed at the body surface. This paper analyzes the numerical error in the 2nd derivatives for a 2-D cylinder and a 3-D sphere problem, and an extrapolation method to obtain the correct derivatives on the body surface is suggested.

  • PDF

Instability analysis of gas injection into liquid (액상으로 분사되는 기체의 불안정성 해석)

  • Kim Hyung-Jun;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.57-60
    • /
    • 2006
  • The instability analysis of submerged gas flow into liquid is studied, which assumes gas and liquid as viscous and irrotational. At low mass flow rate of gas, injected gas plume is collection of bubbles, and increase of gas flow rate makes plume as a jet. It is well known that the transition from bubbling to jetting occurs in the transonic region. But previous works neglect viscous effect of gas flow into liquid. This paper concerns about an application of viscous potential flow theory in cylindrical gas flow into liquid. The growth rate versus wave number and mach number is compared with various condition including inviscid and viscous flow.

  • PDF