• Title/Summary/Keyword: Potential flow

Search Result 2,197, Processing Time 0.037 seconds

Optimum design of blank shape for press forming (최적 프레스가공을 위한 블랭크형상 설계)

  • Kim, Yeong-Seok;Park, Gi-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1141-1148
    • /
    • 1997
  • In the stamping industry the blank shape to be stamped into a designed shape has been conventionally determined from the try out process by the press engineers. The work needs a lot of time and thus leads a loss of productivity. In this study boundary element method for 2-dimensional potential problem was used to design optimum blank shapes for irregular press forming. Here we assumed that the blank is controlled by blank holder only and material flow at blank holder was under potential flow. The developed PC code for designing the optimum blank shape shows that the blank shapes for optimal drawing can be calculated within a few minute in pentium PC and the calculated shapes agree well with the experiments. However the application of this method is constrained only to the pressed product with flat bottom.

Visualization of $1^{st}$ order phase transition by using lattice Boltzmann equation (Lattice Boltmann 방정식에 의한 1차 상변이의 가시화)

  • Ha, Man-Yeong;Kim, Hyo-Geun
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.103-106
    • /
    • 2005
  • Lattice Boltzmann method is a new numerical method of investigating the fluid flow which have been solved by Navier-Stokes equation recently. It is known that making the single and parallel algorithms of the Lattice Boltzmann equation is easier than those of Navier-Stokes equations. Also, we can simulate the two phase flow using either the 'Interaction Potential model ' introduced by Shan and Chen. In this paper, we first compared the 3D cavity results of Lattice Boltzmann method with other numerical results for validation and showed the 3D phase transition and its simple application by using the ' Interaction Potential model'

  • PDF

A CRITICAL NOTE ON THE CONCEPT OF THE CONVENTIONAL INTEGRAL ELECTRIC POWER METERING (기존의 적산전력계측 개념의 새로운 평가)

  • Oh, Hung-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.171-173
    • /
    • 2001
  • Conventional potential concept does not allow different currents before and after the electric load. Experimental examples in case of bioloads show a lot of different currents before and after the bioload, which means that the true potential concept is not the conventional concept from Coulomb attraction energy but the new concept from Gibb's free energy. Gibb's free energy is a kind of potential heat energies and also they are rotating electromagnetic waves. We might think that electric current is not a flow of electrons but a flow of rotating electromagnetic waves, which induces electrons' vibrations. A new measuring method for integral electrical power is suggested for the new Gibb's free energy concept.

  • PDF

Computational rock physics: Lattice-Boltzmann fluid flow simulation in porous media and its applications

  • Keehm, Young-Seuk;Mukerji, Tapan;Nur, Amos
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.661-668
    • /
    • 2003
  • This paper presents Lattice-Boltzmann simulation techniques for single-phase and two-phase fluid flow in porous media. Numerical experiments were performed in a digital rock sample from X-ray microtomography. Computed results showed very good agreement with laboratory measurements of permeability and relative permeability. Two applications using these simulation techniques show the potential of the Lattice-Boltzmann flow simulation to solve many difficult problems coupled with fluid flow in porous media.

  • PDF

Numerical Simulation: Effects of Gas Flow and Heat Transfer on Polymer Deposition in a Plasma Dry Etcher

  • Joo, Junghoon
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.184-188
    • /
    • 2017
  • Polymer deposition pattern on the ceramic lid surface is analyzed by numerical modeling. Assumption was made that is affected by gas flow pattern from the horizontal and vertical nozzles, temperature profile from the finger-like branches made of graphite and electrostatic potential effect. Calculated results showed gas flow dynamics is less relevant than two others. Temperature and electrostatic effects are likely determining the polymer deposition pattern based on our numerical simulation results.

NUMERICAL METHOD IN WAVE-BODY INTERACTIONS

  • MOUSAVIZADEGAN S. H.;RAHMAN M.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.73-91
    • /
    • 2005
  • The application of Green's function in calculation of flow characteristics around submerged and floating bodies due to a regular wave is presented. It is assumed that the fluid is homogeneous, inviscid and incompressible, the flow is irrotational and all body motions are small. Two methods based on the boundary integral equation method (BIEM) are applied to solve associated problems. The first is a low order panel method with triangular flat patches and uniform distribution of velocity potential on each panel. The second method is a high order panel method in which the kernels of the integral equations are modified to make it nonsingular and amenable to solution by the Gaussian quadrature formula. The calculations are performed on a submerged sphere and some floating spheroids of different aspect ratios. The excellent level of agreement with the analytical solutions shows that the second method is more accurate and reliable.

A Study on Operation Condition of Blast Furnace According to Burden Distribution (장입물 층상구조에 따른 고로내 운전상황 변화 연구)

  • Yang, Kwang-Heok;Choi, Sang-Min;Jung, Jin-Kyung
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.145-150
    • /
    • 2006
  • At the furnace top, the distribution of charging coke and ore is adjusted to control the reducing gas flow distribution in the furnace. It is necessary to predict operation condition of blast furnace according to the burden profile to judge whether charging is properly conducted In this study, We propose the model for predicting while layer structures whithin furnace when top burden profile was given. Layer structure of coke and ore could be predicted by top burden profile and solid velocity. Solid velocity is assumed as potential flow. Potential function distribution and timeline are also calculated using solid velocity field. The Calculation is conducted for different burden profile cases. As the result burden distribution and grid structure, which is deformed to match the layer structure in shaft and deadman profile. Gas flow was calculated using this grid, and calculated results are compared with each other.

  • PDF

Characteristic Analysis of Nonlinear Sloshing in Baffled Tank (격막 설치에 따른 비선형 슬로싱 특성 연구)

  • Lee, Hong-Woo;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1455-1462
    • /
    • 2005
  • In this paper, we intend to introduce a nonlinear finite element method based on the fully nonlinear potential flow theory in order to simulate the large amplitude sloshing flow in two-dimensional baffled tank subject to horizontally forced excitation. The free surface is tracked by a direct time differentiation scheme with the four-step predictor-corrector time integration method. The flow velocity is accurately recovered from the velocity potential by second-order least square method. In order to maintain the finite element mesh regularity and total mass, the semi-Lagrangian surface tracking method with area conservation is applied. According to the numerical formulae, we perform the parametric experiments by varying the installation height and the opening width of baffles, in order to examine the effects of baffle on the nonlinear liquid sloshing. From the numerical results, the hydrodynamic characteristics of the large amplitude sloshing are investigated.

A time-domain analysis for a nonlinear free-surface problem (시간영역에서의 비선형 자유표면파문제에 대한 수치해석)

  • Kyoung Jo Hyun;Bai Kwang June;Chung Sang Kwon;Kim Do Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.381-384
    • /
    • 2002
  • The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus the linearized free surface problem has been treated often in the past. But as the computational power increases, there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a time-dependent finite element method is developed to solve the problem. The initial-boundary problem is formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

  • PDF

Bio Sparging Column Experiment for Remediation of Diesel Contaminated Groundwater (디젤오염 지하수 정화를 위한 공기주입정화법 칼럼 실험)

  • Chang Soon-Woong;Lee Si-Jin;Song Jung-Hoon;Kwon Soo-Youl
    • Journal of Environmental Science International
    • /
    • v.13 no.12
    • /
    • pp.1059-1065
    • /
    • 2004
  • Bio sparging experiments were conducted in a laboratory column to investigate the potential removal of diesel contaminated groundwater. The objectives in this study were (a) to determine the extent of diesel degradation in laboratory columns under supplement of nutrient; (b) to determine the effect of variation of air flow in the removal of diesel and (c) to evaluate the potential enhancement of diesel degradation as a function of temperature. Our results showed that the nutrient supplement and higher air flow greatly enhanced diesel degradation. However, the variation of water temperature examined slightly increased degradation rate of diesel fuel.