• 제목/요약/키워드: Potential dynamic motion

검색결과 124건 처리시간 0.025초

Molecular Dynamic Simulation for Penetration of Carbon Nanotubes into an Array of Carbon Nnantotubes

  • Jang, Ilkwang;Jang, Yong Hoon
    • Tribology and Lubricants
    • /
    • 제36권5호
    • /
    • pp.290-296
    • /
    • 2020
  • When two layers of carbon nanotube (CNT) arrays are loaded to mate, the free ends of individual CNTs come into contact at the interface of the two layers. This leads to a higher contact resistance due to a smaller contact region. However, when the free CNT ends of one array penetrate into the mating array, the contact region increases, effectively lowering the contact resistance. To explore the penetration of mating CNTs, we perform molecular dynamic simulations of a simple unit cell model, incorporating four CNTs in the lower array layer coupled with a single moving CNT on the upper layer. The interaction with neighboring CNTs is modelled by long-range carbon bond order potential (LCBOP I). The model structure is optimized by energy minimization through the conjugate gradient method. A NVT ensemble is used for maintain a room temperature during simulation. The time integration is performed through the velocity-Verlet algorithm. A significant vibrational motion of CNTs is captured when penetration is not available, resulting in a specific vibration mode with a high frequency. Due to this vibrational behavior, the random behaviors of CNT motion for predicting the penetration are confirmed under the specific gap distances between CNTs. Thus, the probability of penetration is examined according to the gap distance between CNTs in the lower array and the aspect ratio of CNTs. The penetration is significantly affected by the vibration mode due to the van der Waals forces between CNTs.

A Flow Analysis of Small Craft by Using CFD

  • Park, Ji-Yong;Jeong, Jin-Hee;Hwang, Tea-Wook;Lee, Sol-Ah;Kim, Kyung-Sung
    • Journal of Multimedia Information System
    • /
    • 제7권4호
    • /
    • pp.269-276
    • /
    • 2020
  • The small craft including jet-board for leisure are commonly smaller than the general commercial vessels. For the floating vessel, the motion analysis is significantly important component to design the shape. It is, however, hardly predicting its behavior by using conventional boundary element method due to violating small amplitude assumption for potential theory. The computational fluid dynamics method can afford to simulate such small craft, but its grid system was not able to calculate motion, because movable body disturbs the grid system by confliction. The dynamics fluid body interaction model with over-set mesh system can be dealt with movable floating body under irregular ocean wave. In this study, several cases were considered to reveal that DFBI is essential method to predict floating body motion. The single phase simulate was conducted to establish the shape perfection, and then the validated vessel was simulated with ocean waves weather DFBI option on or off. Through the comparison, the results between the cases of DFBI on and off shows significantly difference. It was claimed that the DFBI was necessary not only to calculation body motion, but also to predict accurate drag and lift force on the floating body for small size craft.

계류된 구조물에 작용하는 파도의 동적작용에 대하여 (Dynamic Interaction of Waves with a Moored Structure)

  • ;김창제;야전영명
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.94-102
    • /
    • 1992
  • This paper presents the method of numerical analysis concerned with the hydropdynamic forces and moments of the floating bodies exerted by waves. The analytic methods of hydrodynamic wave forces and moments for large volume structures are generally classified into four categories ; the strip method, the boundary element method, the finite element method, and the potential matching method. In the case of the comparatively large structures, diffraction theory can be applied. However, there are no application limits of diffraction theory which have been known concerning with the analytic method of the rectangular structures. In this paper, the two-dimensional B.E.M. is treated for a moored small rectangular structure in order to evaluate applicability of diffraction theory. Numerical calculation is carried out for the structure. The results are compared with some other ones for verification. The result shows that diffraction theory is applicable to structures smaller than 0.15 in the ratio of the representative structure length d to wave length L for rectangular ones.

  • PDF

화물창의 유체유동을 고려한 선체운동에 관한 연구 (A study on the Motions of a ship with Liquid Cargo Tanks)

  • 박명규;김순갑;김동준
    • 한국항해학회지
    • /
    • 제10권2호
    • /
    • pp.139-155
    • /
    • 1986
  • In this paper the dynamic effects due to the free water motions in tanks upon the lateral motion of a floating body in regular waves are calculated, in order to obtain the relationship between a motion of a floating body and that of the free water in tanks. Under the assumption that the fluid is ideal and motion amplitudes are small, velocity potential of the fluid in tanks is calculated by the source distribution method and the hydrodynamic forces and moments are calculated by the integration of fluid pressures over the tank surface. Hydrodynamic effects of the fluid on the floating body are expressed in terms of added mass and coupling coefficient obtained from the integration. Computations are carried out for ship with seven wide center tanks and comparisons between the liquid cargo loading case and the rigid cargo loading case are shown.

  • PDF

스펙트럼 배치방법에 의한 원형도관내의 비점성유동장에 놓인 유연성 실린더의 안정성 분석 (Dynamic Stability of a Flexible Cylinder Subjected to Inviscid Flow in a Coaxial Cylindrical Duct Based on Spectral Method)

  • Sim, Woo-Gun;Bae, Yoon-Yeong
    • Nuclear Engineering and Technology
    • /
    • 제26권2호
    • /
    • pp.212-224
    • /
    • 1994
  • 원형도관내의 비점성유동장에 놓인 동심인 유연성 실린더의 안정성을 분석하기 위하여 수치해석적방법이 개발되었다. 진동하는 실린더에 작용하는 비정상·비점성 유체유발력을 스펙트럼 배치방법을 사용하여 지배방정식을 단순화시키지 않음으로서 더 정밀하게 예측하였다. 본 수치해석이론은 기존의 퍼텐샬이론과 비해 비교적 넓은 환의 경우와 짧은 실린더의 경우에도 적용할 수 있다. 비점성유동의 지배방정식은 라플라스방정식으로부터 구하였다. 유체유동과 결부된 실린더의 유동방정식은 갤러킨의 방법에 의하여 불연속방정식으로 표시되며 이로부터 계의 운동특성을 검토하였다. 계가 좌굴현상에 의하여 안정성을 잃는 임계유속에 대한 환의 간격과 실린더의 길이의 영향이 검토되었다. 수치해석방법을 입증하기 위하여 얇은 막 근사이론에 근거를 두고 호프슨이 제안한 퍼텐샬이론을 개선하였다. 계의 안정성과 동적특성을 수치해석방법에 의하여 예시하였고 기존의 이론과 본 연구에서 제안된 근사법으로 구한 결과와 비교하여 잘 일치함을 보였다. 무차원화된 임계유속은 환의 간격이 넓을수록 실린더의 길이 가 짧을수록 증가함을 보였다.

  • PDF

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • 제9권3호
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Dynamic characteristics and fatigue damage prediction of FRP strengthened marine riser

  • Islam, A.B.M. Saiful
    • Ocean Systems Engineering
    • /
    • 제8권1호
    • /
    • pp.21-32
    • /
    • 2018
  • Due to the escalation in hydrocarbon consumption, the offshore industry is now looking for advanced technology to be employed for deep sea exploration. Riser system is an integral part of floating structure used for such oil and gas extraction from deep water offering a system of drill twines and production tubing to spread the exploration well towards the ocean bed. Thus, the marine risers need to be precisely employed. The incorporation of the strengthening material, fiber reinforced polymer (FRP) for deep and ultra-deep water riser has drawn extensive curiosity in offshore engineering as it might offer potential weight savings and improved durability. The design for FRP strengthening involves the local design for critical loads along with the global analysis under all possible nonlinearities and imposed loadings such as platform motion, gravity, buoyancy, wave force, hydrostatic pressure, current etc. for computing and evaluating critical situations. Finite element package, ABAQUS/AQUA is the competent tool to analyze the static and dynamic responses under the offshore hydrodynamic loads. The necessities in design and operating conditions are studied. The study includes describing the methodology, procedure of analysis and the local design of composite riser. The responses and fatigue damage characteristics of the risers are explored for the effects of FRP strengthening. A detail assessment on the technical expansion of strengthening riser has been outlined comprising the inquiry on its behavior. The enquiry exemplifies the strengthening of riser as very potential idea and suitable in marine structures to explore oil and gas in deep sea.

Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method

  • Isa Ahmadi;Mohammad Naeim Moradi;Mahdi Davar Panah
    • Structural Engineering and Mechanics
    • /
    • 제89권2호
    • /
    • pp.135-153
    • /
    • 2024
  • In this study, the impact response of a nanobeam with a moving nanoparticle is investigated. Timoshenko beam theory is used to model the nanobeam behavior and nonlocal elasticity theory is used to consider the effects of small dimensions. The interaction between the nanoparticle and nanobeam has been described using Lennard-Jones potential theory and the equations are discretized by the radial basis meshless method and a mathematical model is presented for the nanobeam-nanoparticle system. Validation of the proposed model is achieved by comparing the obtained natural frequencies with reference values, demonstrating good agreement. Dimensionless frequency analysis reveals a decrease with increasing nonlocal parameter, pointing out a toughening effect in nanobeam. The dynamic response of the nanobeam and nanoparticle is obtained by time integration of equations of motion using Newmark and Wilson-𝜃 methods. A comparative analysis of the two methods is conducted to determine the most suitable approach for this study. As a distinctive aspect in this study, the analysis incorporates the deformation of the nanobeam resulting from the nanoparticle-nanobeam interaction when calculating the Lennard-Jones force in the nanobeam-nanoparticle system. The numerical findings explore the impact of various factors, including the nonlocal parameter, initial velocity, nanoparticle mass, and boundary conditions.

공극의 시간변화를 고려한 3 상 BLDC 모터의 동특성 해석 (Dynamic Analysis of a 3-Phase BLDC Motor Considering Variation of an Air-Gap)

  • 박기선;임형빈;정진태
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1038-1044
    • /
    • 2009
  • In this study, vibrations of an electric motor are analyzed when the motor has the interaction between mechanical and electromagnetic behaviors. For this vibration analysis a 3-phase 8-pole brushless DC motor is selected. Vibrations of the motor are influenced by coupled electromechanical characteristics. The variation of air-gap induced by vibration has an influence on the inductance of the motor coil. To analyze dynamic characteristics of the rotor, we studied inductance by the variation of an air-gap. After obtaining the kinetic, potential and magnetic energies for the motor, the equations of motion are derived by using Lagrange's equation. By applying the Newmark time integration method to the equations, the dynamic responses for the displacements and currents are computed.

부유식 해양도시의 동적응답특성 (Dynamic Response Characteristics of a Floating Ocean City in Waves)

  • 구자삼;홍석원
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.80-92
    • /
    • 1994
  • The dynamic response characteristics of a floating ocean city are examined for presenting the basic data for the design of huge offshore structures supported by a large number of floating bodies in waves. The numerical approach which is accurate in linear system is based on combination of a three dimensional source distribution method, wave interaction theory and the finite element method of using the space frame element. The hydrodynamic interactions among the floating bodies are taken into account in their exact form within the context of linear potential theory in the motion and structural analysis. The method is applicable to an arbitrary number of three dimensional bodies having any individual body geometries and geometrical arrangement with the restriction that the circumscribed, bottom-mounted. Imaginary vertical cylinder for each body does not contain any part of the other body. The validity of this procedure was verified by comparing with experimental results obtained in the literature.

  • PDF