• Title/Summary/Keyword: Potential capability

Search Result 668, Processing Time 0.027 seconds

Review of Nanoparticles in Drinking Water: Risk Assessment and Treatment (나노입자의 현황조사 및 처리방안 마련을 위한 문헌연구)

  • Kim, Seung-Hyun;Hong, Seung-kwan;Yoon, Je-Yong;Kim, Doo-Il;Lee, Sang-Ho;Kweon, Ji-Hyang;Kim, Hyung-Soo;ko, Seok-Dock;Kuk, Ji-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.2
    • /
    • pp.201-212
    • /
    • 2011
  • Nanotechnology is the applied science which develops new materials and systems sized within 1 to 100 nanometer, and improves their physical, chemical, and biological characteristics by manipulating on an atomic and molecular scale. This nanotechnology has been applied to wide spectrum of industries resulting in production of various nanoparticles. It is expected that more nanoparticles will be generated and enter to natural water bodies, imposing great threat to potable water resources. However their toxicity and treatment options have not been throughly investigated, despite the significant growth of nanotechnology-based industries. The objective of this study is to provide fundamental information for the management of nanoparticles in water supply systems through extensive literature survey. More specifically, two types of nanoparticles are selected to be a potential problem for drinking water treatment. They are carbon nanoparticles such as carbon nanotube and fullerene, and metal nanoparticles including silver, gold, silica and titanium oxide. In this study, basic characteristics and toxicity of these nanoparticles were first investigated systematically. Their monitoring techniques and treatment efficiencies in conventional water treatment plants were also studied to examine our capability to mitigate the risk associated with nanoparticles. This study suggests that the technologies monitoring nanopartilces need to be greatly improved in water supply systems, and more advanced water treatment processes should be adopted for better control of these nanoparticles.

Characterization of Lactobacillus reuteri BCLR-42 and Lactobacillus plantarum BCLP-51 as novel dog probiotics with innate immune enhancing properties

  • Kim, Eun Jin;Kang, Yeong Im;Bang, Tae Il;Lee, Myoung Han;Lee, Sang Won;Choi, In Soo;Song, Chang Seon;Lee, Joong Bok;Park, Seung Yong
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • Probiotics that are able to provide beneficial effects on animal health have become important ingredients of dog foods. This study was conducted to characterize the probiotic potentials of two strains, Lactobacillus reuteri BCLR-42 and Lactobacillus plantarum BCLP-51, that were derived from feces of healthy dogs and evaluated based on tolerance to low pH and bile acid, antimicrobial activities, enzyme profiles, sensitivity to antibiotics, and innate immune enhancing potentials. Both strains showed survival of more than 90% at pH 3 and 0.2% bile acid and exhibited broad antimicrobial activities against indicator bacteria. Moreover, both strains showed high sensitivity to antibiotics, except vancomycin, metronidazole, and gentamicin. The alkaline phosphatase was negligible (score 0), whereas they showed strong beta galactosidase activity (score range 5 or 3, respectively). The phagocytosis and oxidative burst activities of canine granulocytes were significantly enhanced in response to both strains. These results show that both strains have the capability to act as probiotics and the potential for application as ingredients in dog foods.

Development of Flood Vulnerability Index Considering Climate Change (기후변화를 고려한 홍수취약성지표의 개발)

  • Son, Min-Woo;Sung, Jin-Young;Chung, Eun-Sung;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.231-248
    • /
    • 2011
  • This study aims to develop the Flood Vulnerability Index (FVI) and apply it to the Bukhan River Basin. A1B and A2 scenarios of CGCM3 of IPCC were adopted and SDSM (Statistical Downscaling Model) was used to downscale the original data to the daily data. Driver-Presure-State-Impact-Response (DPSIR) model was introduced to select all appropriate indicators for FVI and the daily rainfall-runoff model was simulated using HSPF (Hydrological Simulation Program-Fortran). Since FIV proposed in this study has a capability to quantify the potential flood vulnerability considering both present and future climate conditions, it is expected to be used for the comprehensive water resources and environmental planning.

High Proton Conductivity Crosslinked Sulfonated Polyimide Membranes (높은 수소이온전도성을 가진 가교술폰화폴리이미드막)

  • Lee, Chang-Hyun;Park, Chi-Hoon;Park, Ho-Bum;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.61-63
    • /
    • 2003
  • A major research objective related to proton exchange membrane(PEM) for DMFC is to achieve high proton conductivity over 10$^{-2}$ S/cm, high hydrolytic stability and low methanol permeability with low cost base materials. for the purpose, a lot of thermoplastic polymers such as polysulfones, polyethersulfone, polyetherketones, polyimides, polyoxadiazole, polyphosphazene and polybenzimidazol have been investigated. Amongst those polymers, polyimides have been suggested as a potential PEM due to their excellent thermal, chemical stability and good mechanical properties. Generally, polyimides are synthesized by polycondensation with numerious diamines and dianhydriedes. In our study, polyimide was prepared using non-sulfonated diamine, sulfonated diamine directly synthesized by fuming sulfuric acid, and naphthalenic dianhydride to improve the hydrolysis stability under acidic condition. Through monomer sulfonation-subsequent polymerization method, the high proton conducting capability and the desired sulfonation level were effectively controlled at the same time. To reduce severe methanol transport through the membrane, the chemical crosslinking among polymer chains was introduced using various crosslinking agents with different chain lengths. The crosslinked sulfonated polyimide membranes showed high proton conductivity up to 8.09$\times$10$^{-2}$ S/cm and from crosslinking effect methanol transport through the membranes was considerably reduced as compared with unmodified membranes. For increase of chain length of crosslinker, methanol permeability was adversely reduced to 10$^{-8}$ $\textrm{cm}^2$/s due to decrease of IEC and increase of crosslinking desity.

  • PDF

Removal of Non-volatile Contaminant from Aquifer using Surfactant-enhanced Ozone Sparging (오존과 계면활성제를 이용한 대수층 내 비휘발성 물질 제거)

  • Yang, Su-Kyeong;Shin, Seung-Yeop;Kim, Heon-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.37-45
    • /
    • 2010
  • Surfactant-enhanced ozone sparging (SEOS), an advanced version of SEAS (surfactant-enhance air sparging) was introduced in this study for the first time for removal of non-volatile contaminant from aquifer. The advantages of implementing SEAS, enhanced air saturation and expanded zone of sparging influence, are combined with the oxidative potential of ozone gas. Experiments conducted in this study were tow fold; 1-dimensional column experiments for the changes in the gas saturation and contaminant removal during sparging, and 2-dimensional box model experiment for the changes in the size of zone of influence and contaminant removal. An anionic surfactant (SDBS, sodium dodecylbenzene sulfonate) was used to control surface tension of water. Fluorescein sodium salt was used as a representative of watersoluble contaminants, for its fluorescence which is easy to detect when it disappears due to oxidative degradation. Three different gases (air, high-concentration ozone gas, and low-concentration ozone gas) were used for the sparging of 1-D column experiment, while two gases (air and low-concentration ozone gas) were used for 2-D box model experiment. When SEOS was performed for the column and box model, the air saturation and the zone of influence were improved significantly compared to air sparging without surface tension suppression, resulted in effective removal of the contaminant. Based on the experiments observations conducted in this study, SEOS was found to maintain the advantages of SEAS with further capability of oxidative degradation of non-volatile contaminants.

Antioxidant therapy enhances pulpal healing in bleached teeth

  • Lima, Adriano Fonseca;Marques, Marcelo Rocha;Soares, Diana Gabriela;Hebling, Josimeri;Marchi, Giselle Maria;de Souza Costa, Carlos Alberto
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.44-54
    • /
    • 2016
  • Objectives: The purpose of this study was to evaluate the histopathological effects of an antioxidant therapy on the pulp tissue of rat teeth exposed to a bleaching gel with 35% hydrogen peroxide. Materials and Methods: Forty rats were subjected to oral ingestion by gavage of distilled water (DW) or ascorbic acid (AA) 90 min before the bleaching therapy. For the bleaching treatment, the agent was applied twice for 5 min each to buccal surfaces of the first right mandibular molars. Then, the animals were sacrificed at 6 hr, 24 hr, 3 day, or 7 day post-bleaching, and the teeth were processed for microscopic evaluation of the pulp tissue. Results: At 6 hr, the pulp tissue showed moderate inflammatory reactions in all teeth of both groups. In the DW and AA groups, 100% and 80% of teeth exhibited pulp tissue with significant necrosis and intense tissue disorganization, respectively. At 24 hr, the AA-treated group demonstrated a greater regenerative capability than the DW group, with less intense inflammatory reaction and new odontoblast layer formation in 60% of the teeth. For up to the 7 day period, the areas of pulpal necrosis were replaced by viable connective tissue, and the dentin was underlined by differentiated odontoblast-like cells in most teeth of both groups. Conclusions: A slight reduction in initial pulpal damage during post-bleaching was promoted by AA therapy. However, the pulp tissue of AA-treated animals featured faster regenerative potential over time.

A Single Natural Variation Determines Cytosolic Ca2+-Mediated Hyperthermosensitivity of TRPA1s from Rattlesnakes and Boas

  • Du, Eun Jo;Kang, KyeongJin
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.572-580
    • /
    • 2020
  • Transient receptor potential ankyrin 1 from rattlesnakes (rsTRPA1) and boas (bTRPA1) was previously proposed to underlie thermo-sensitive infrared sensing based on transcript enrichment in infrared-sensing neurons and hyper-thermosensitivity expressed in Xenopus oocytes. It is unknown how these TRPA1s show thermosensitivities that overwhelm other thermoreceptors, and why rsTRPA1 is more thermosensitive than bTRPA1. Here, we show that snake TRPA1s differentially require Ca2+ for hyper-thermosensitivity and that predisposition to cytosolic Ca2+ potentiation correlates with superior thermosensitivity. Extracellularly applied Ca2+ upshifted the temperature coefficients (Q10s) of both TRPA1s, for which rsTRPA1, but not bTRPA1, requires cytosolic Ca2+. Intracellular Ca2+ chelation and substitutive mutations of the conserved cytosolic Ca2+-binding domain lowered rsTRPA1 thermosensitivity comparable to that of bTRPA1. Thapsigargin-evoked Ca2+ or calmodulin little affected rsTRPA1 activity or thermosensitivity, implying the importance of precise spatiotemporal action of Ca2+. Remarkably, a single rattlesnake-mimicking substitution in the conserved but presumably dormant cytosolic Ca2+-binding domain of bTRPA1 substantially enhanced thermosensitivity through cytosolic Ca2+ like rsTRPA1, indicating the capability of this single site in the determination of both cytosolic Ca2+ dependence and thermosensitivity. Collectively, these data suggest that Ca2+ is essential for the hyper-thermosensitivity of these TRPA1s, and cytosolic potentiation by permeating Ca2+ may contribute to the natural variation of infrared senses between rattlesnakes and boas.

Anti-ulcerogenic activity of virgin coconut oil contribute to the stomach health of humankind

  • Selverajah, Malarvili;Zakaria, Zainul Amiruddin;Long, Kamariah;Ahmad, Zuraini;Yaacob, Azhar;Somchit, Muhammad Nazrul
    • CELLMED
    • /
    • v.6 no.2
    • /
    • pp.11.1-11.7
    • /
    • 2016
  • The aimed of the presence study was to determine the antiulcer potential of virgin coconut oil (VCO), either extracted by wet process (VCOA) or fermentation process (VCOB), and to compare their effectiveness against the copra oil (CO) using the HCl/ethanol-induced gastric ulcer model. Earlier, the oils underwent chemical analysis to determine the free fatty acids composition, physicochemical properties and anti-oxidant capability. In the antiulcer study, rats (n=6) were pre-treated orally for 7 consecutive days with distilled water (vehicle), 100 mg/kg ranitidine (positive group) or the respective oils (10, 50, and 100% concentration). One hour after the last test solutions administration on Day 7th, the animals were subjected to the gastric ulcer assay. Macroscopic and microscopic analyses were performed on the collected rat's stomachs. From the results obtained, the chemical analysis revealed i) the presence of high content of lauric acid followed by myristic acid and palmitic acid in all oils and; ii) the significant (*p< 0.05) different in anisidine- and peroxide-value, percentage of free fatty acid, total phenolic content and total antioxidant activity among the oils. The animal study demonstrated that all oil possess significant (*p< 0.05) antiulcer activity with VCOB being the most effective oil followed by VCOA and CO. The macroscopic observations were supported by the microscopic findings. Interestingly, all oils were more effective than 100 mg/kg ranitidine (reference drug). In conclusion, coconut oils exert remarkable antiulcer activity depending on their methods of extraction, possibly via the modulation of its antioxidant and anti-inflammatory activity.

The Recognition of Printed Korean Characters by a Neural Network (신경회로망을 이용한 인쇄체 한글 문자의 인식)

  • Kim, Sang-Woo;Jeon, Yun-Ho;Choi, Chong-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.2
    • /
    • pp.65-72
    • /
    • 1990
  • The potential of neural networks for the recognition of the printed Korean characters is examined. In spite of good classification capability of neural networks, it is difficult to train a neural network to recognize Korean characters. The difficulty is due to a large number of Korean characters, the similarities among the characters, and the large number of data from the character images. To reduce the input image data, DC components are extracted from each input images. These preprocessed data are used as input to the neural network. The output nodes are composed to represent the characteristics of Korean characters. A MLP (multilayer perceptron) with one hidden layer was trained with a modified BEP algorithm, This method gives good recognition rate for the standard positioned characters of more than 2,300. The result shows that neural networks are well suited for the recognition of printed Korean characters.

  • PDF

Development of an Efficient Calculation Method of Pressure Acting on a Bluff Body and the Deformation of Flexible Oil Fences in Currents (뭉뚝한 물체에 작용하는 압력의 효율적인 계산법 개발과 조류중에서의 유연한 유벽의 변형)

  • Kang, Kwan Hyoung;Lee, Choung Mook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.22-31
    • /
    • 1996
  • An efficient calculation method of pressure acting on a bluff body is developed. The method is applied to assess the containment capability of an oil fence, considering skirt deformation in current. The pressure on the frontal side of the oil fence is determined by analyzing the potential flow, substituting the wake region as a rigid body which has its boundary at the closed separation streamlines. The pressure at the downstream side of the fence, the so called base pressure, is obtained from the existing experimental results. To verify the calculation method, pressure drag of some bluff bodies in an infinite-fluid medium is calculated, which shows good agreement with the experimental results. The deformed shape of the oil fence is obtained by solving, iteratively, the coupled equations governing the flow field and the deformation of the oil fence, respectively. The deformed shape and the decrease of draft of oil fences with different ballast mass in various current conditions are investigated.

  • PDF