• Title/Summary/Keyword: Potential biomarkers

Search Result 378, Processing Time 0.027 seconds

Plasma Phosphoproteome and Differential Plasma Phosphoproteins with Opisthorchis Viverrini-Related Cholangiocarcinoma

  • Kotawong, Kanawut;Thitapakorn, Veerachai;Roytrakul, Sittiruk;Phaonakrop, Narumon;Viyanant, Vithoon;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.3
    • /
    • pp.1011-1018
    • /
    • 2015
  • This study was conducted to investigate the plasma phosphoproteome and differential plasma phosphoproteins in cases of of Opisthorchis viverrini (OV)-related cholangiocarcinoma (CCA). Plasma phosphoproteomes from CCA patients (10) and non-CCA subjects (5 each for healthy subjects and OV infection) were investigated using gel-based and solution-based LC-MS/MS. Phosphoproteins in plasma samples were enriched and analyzed by LC-MS/MS. STRAP, PANTHER, iPath, and MeV programs were applied for the identification of their functions, signaling and metabolic pathways; and for the discrimination of potential biomarkers in CCA patients and non-CCA subjects, respectively. A total of 90 and 60 plasma phosphoproteins were identified by gel-based and solution-based LC-MS/MS, respectively. Most of the phosphoproteins were cytosol proteins which play roles in several cellular processes, signaling pathways, and metabolic pathways (STRAP, PANTHER, and iPath analysis). The absence of serine/arginine repetitive matrix protein 3 (A6NNA2), tubulin tyrosine ligase-like family, member 6, and biorientation of chromosomes in cell division protein 1-like (Q8NFC6) in plasma phosphoprotein were identified as potential biomarkers for the differentiation of healthy subjects from patients with CCA and OV infection. To differentiate CCA from OV infection, the absence of both serine/threonine-protein phosphatase 2A 56 kDa regulatory subunit beta isoform and coiled-coil domain-containing protein 126 precursor (Q96EE4) were then applied. A combination of 5 phosphoproteins may new alternative choices for CCA diagnosis.

Mining of Biomarker Genes from Expressed Sequence Tags and Differential Display Reverse Transcriptase-Polymerase Chain Reaction in the Self-fertilizing Fish, Kryptolebias marmoratus and Their Expression Patterns in Response to Exposure to an Endocrine-disrupting Alkylphenol, Bisphenol A

  • Lee, Young-Mi;Rhee, Jae-Sung;Hwang, Dae-Sik;Kim, Il-Chan;Raisuddin, Sheikh;Lee, Jae-Seong
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.287-303
    • /
    • 2007
  • Expressed sequence tags (ESTs) and differentially expressed cDNAs from the self-fertilizing fish, Kryptolebias marmoratus were mined to develop alternative biomarkers for endocrine-disrupting chemicals (EDCs). 1,577 K. marmoratus cDNA clones were randomly sequenced from the 5'-end. These clones corresponded to 1,518 and 1,519 genes in medaka dbEST and zebrafish dbEST, respectively. Of the matched genes, 197 and 115 genes obtained Unigene IDs in medaka dbEST and zebrafish dbEST, respectively. Many of the annotated genes are potential biomarkers for environmental stresses. In a differential display reverse transcriptase-polymerase chain reaction (DD RT-PCR) study, 56 differential expressed genes were obtained from fish liver exposed to bisphenol A. Of these, 16 genes were identified after BLAST search to GenBank, and the annotated genes were mainly involved in catalytic activity and binding. The expression patterns of these 16 genes were validated by real-time RT-PCR of liver tissue from fish exposed to bisphenol A. Our findings suggest that expression of these 16 genes is modulated by endocrine disrupting chemicals, and therefore that they are potential biomarkers for environmental stress including EDCs exposure.

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.

Effects of dietary supplementation of high-dose folic acid on biomarkers of methylating reaction in vitamin $B_{12}$-deficient rats

  • Min, Hye-Sun
    • Nutrition Research and Practice
    • /
    • v.3 no.2
    • /
    • pp.122-127
    • /
    • 2009
  • Folate is generally considered as a safe water-soluble vitamin for supplementation. However, we do not have enough information to confirm the potential effects and safety of folate supplementation and the interaction with vitamin $B_{12}$ deficiency. It has been hypothesized that a greater methyl group supply could lead to compensation for vitamin $B_{12}$ deficiency. On this basis, the present study was conducted to examine the effects of high-dose folic acid (FA) supplementation on biomarkers involved in the methionine cycle in vitamin $B_{12}$-deficient rats. Sprague-Dawley rats were fed diets containing either 0 or $100{\mu}g$ (daily dietary requirement) vitamin $B_{12}/kg$ diet with either 2 mg (daily dietary requirement) or 100 mg FA/kg diet for six weeks. Vitamin $B_{12}$-deficiency resulted in increased plasma homocysteine (p<0.01), which was normalized by dietary supplementation of high-dose FA (p<0.01). However, FA supplementation and vitamin $B_{12}$ deficiency did not alter hepatic and brain S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) concentrations and hepatic DNA methylation. These results indicated that supplementation of high-dose FA improved homocysteinemia in vitamin $B_{12}$-deficiency but did not change SAM and SAH, the main biomarkers of methylating reaction.

Circulating Plasma and Exosomal microRNAs as Indicators of Drug-Induced Organ Injury in Rodent Models

  • Cho, Young-Eun;Kim, Sang-Hyun;Lee, Byung-Heon;Baek, Moon-Chang
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.367-373
    • /
    • 2017
  • This study was performed to evaluate whether microRNAs (miRNAs) in circulating exosomes may serve as biomarkers of drug-induced liver, kidney, or muscle-injury. Quantitative PCR analyses were performed to measure the amounts of liver-specific miRNAs (miR-122, miR-192, and miR-155), kidney-specific miR-146a, or muscle-specific miR-206 in plasma and exosomes from mice treated with liver, kidney or muscle toxicants. The levels of liver-specific miRNAs in circulating plasma and exosomes were elevated in acetaminophen-induced liver injury and returned to basal levels by treatment with antioxidant N-acetyl-cysteine. Circulating miR-146a and miR-206 were increased in cisplatin-induced nephrotoxicity and bupivacaine-induced myotoxicity, respectively. Taken together, these results indicate that circulating plasma and exosomal miRNAs can be used as potential biomarkers specific for drug-induced liver, kidney or muscle injury.

A Metabolomic Approach to Understanding the Metabolic Link between Obesity and Diabetes

  • Park, Seokjae;Sadanala, Krishna Chaitanya;Kim, Eun-Kyoung
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.587-596
    • /
    • 2015
  • Obesity and diabetes arise from an intricate interplay between both genetic and environmental factors. It is well recognized that obesity plays an important role in the development of insulin resistance and diabetes. Yet, the exact mechanism of the connection between obesity and diabetes is still not completely understood. Metabolomics is an analytical approach that aims to detect and quantify small metabolites. Recently, there has been an increased interest in the application of metabolomics to the identification of disease biomarkers, with a number of well-known biomarkers identified. Metabolomics is a potent approach to unravel the intricate relationships between metabolism, obesity and progression to diabetes and, at the same time, has potential as a clinical tool for risk evaluation and monitoring of disease. Moreover, metabolomics applications have revealed alterations in the levels of metabolites related to obesity-associated diabetes. This review focuses on the part that metabolomics has played in elucidating the roles of metabolites in the regulation of systemic metabolism relevant to obesity and diabetes. It also explains the possible metabolic relation and association between the two diseases. The metabolites with altered profiles in individual disorders and those that are specifically and similarly altered in both disorders are classified, categorized and summarized.

MicroRNAs May Serve as Emerging Molecular Biomarkers for Diagnosis and Prognostic Assessment or as Targets for Therapy in Gastric Cancer

  • Mu, Yong-Ping;Sun, Wen-Jie;Lu, Chuan-Wen;Su, Xiu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.4813-4820
    • /
    • 2015
  • Gastric cancer (GC) is one of the most common cancers, with high incidences in East Asia countries. Most GC patients have been reported with low early diagnosis rate and show extremely poor prognosis. Therefore, it is necessary to develop novel and more sensitive biomarkers to improve early diagnosis and therapy in order to provide longer survival and better quality of life for gastric cancer patients. MicroRNAs (miRNAs) play crucial roles in GC development and progression. miRNAs have emerged as a novel molecular biomarker for cancer diagnosis, prognosis and therapy with surprising stability in tissues, serum or other body fluids. This review summarizes major advances in our current knowledge about potential miRNA biomarkers for GC that have been reported in the past two years.

Garlic Phytocompounds Possess Anticancer Activity by Specifically Targeting Breast Cancer Biomarkers - an in Silico Study

  • Roy, Nabarun;Davis, Sangeetha;Narayanankutty, Arunaksharan;Nazeem, PA;Babu, TD;Abida, PS;Valsala, PA;Raghavamenon, Achuthan C
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.6
    • /
    • pp.2883-2888
    • /
    • 2016
  • Background: Breast cancer (BC) is a serious lifestyle disease. There are several prognostic biomarkers like nuclear receptors whose over-expression is associated with BC characteristics. These biomarkers can be blocked by compounds with anti-cancer potential but selection must be made on the basis of no adverse side effects. This study is focused on finding of compounds from a plant source garlic. Materials and Methods: Twenty compounds from garlic and five targets considered involved in BC were retrieved from Pubchem database and Protein Data Bank respectively. They were docked using Accelrys Discovery Studio (DS) 4.0. The compounds which showed interaction were checked for drug likeliness. Results: Docking studies and ADMET evaluation revealed twelve compounds to be active against the targets. All the compounds displayed highly negative dock scores which indicated good interactions. Conclusions: The results of this study should help researchers and scientists in the pharmaceutical field to identify drugs based on garlic.

Substance P and Neuropeptide Y as Potential Biomarkers for Diagnosis of Acute Myocardial Infarction in Korean Patients

  • Han, Hyojeong;Seo, Hong Seog;Jung, Byung Hwa;Woo, Kyoungja;Yoo, Young Sook;Kang, Min-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.158-164
    • /
    • 2014
  • Substance P and neuropeptide Y were discovered as early diagnostic biomarkers of acute myocardial infarction in Korean patients and confirmed using enzyme-linked immunosorbent assay (ELISA). We screened 12 peptides from the sera of Korean acute myocardial infarction (AMI) patients and detected 3 peptides (neuropeptide Y, substance P, and N-terminal pro-B-type natriuretic peptide) to be elevated from patients' sera by liquid chromatography mass/mass spectrometry. The elevated concentration of 3 peptides was confirmed by ELISA. The screening results revealed the substance P, neuropeptide Y, and pro-B-type natriuretic peptide (47-76) concentrations were higher in patients' sera than in healthy controls. The sensitivity and specificity of substance P for AMI diagnostic marker were 80% and 83%, respectively, and those of neuropeptide Y were 87% and 90%, respectively compared to healthy controls. These results suggest that substance P and neuropeptide Y could be used as early diagnostic biomarkers in patients with AMI.

Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS

  • Park, Hee-Won;In, Gyo;Kim, Jeong-Han;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field.