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Obesity and diabetes arise from an intricate interplay be-
tween both genetic and environmental factors. It is well 
recognized that obesity plays an important role in the de-
velopment of insulin resistance and diabetes. Yet, the ex-
act mechanism of the connection between obesity and 
diabetes is still not completely understood. Metabolomics 
is an analytical approach that aims to detect and quantify 
small metabolites. Recently, there has been an increased 
interest in the application of metabolomics to the identifi-
cation of disease biomarkers, with a number of well-known 
biomarkers identified. Metabolomics is a potent approach 
to unravel the intricate relationships between metabolism, 
obesity and progression to diabetes and, at the same time, 
has potential as a clinical tool for risk evaluation and moni-
toring of disease. Moreover, metabolomics applications 
have revealed alterations in the levels of metabolites relat-
ed to obesity-associated diabetes. This review focuses on 
the part that metabolomics has played in elucidating the 
roles of metabolites in the regulation of systemic metabo-
lism relevant to obesity and diabetes. It also explains the 
possible metabolic relation and association between the 
two diseases. The metabolites with altered profiles in indi-
vidual disorders and those that are specifically and simi-
larly altered in both disorders are classified, categorized 
and summarized. 
 
 
INTRODUCTION
1 
The term “metabolites” denotes all endogenous small mole-
cules that are involved (as substrates, intermediates or prod-
ucts) in common metabolic reactions in biochemical pathways 
essential for growth, development, reproduction and stress 
response mechanisms (Goodacre et al., 2004). Metabolomics 
is defined as a technology aimed at measuring/profiling chang-
es in the levels of metabolites present inside a cell, tissue, or 
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organism in response to a genetic variation or pathophysiologi-
cal stimuli (Oliver et al., 1998; Scarfe et al., 1998). Another aim 
of metabolomics is to evaluate the relative differences between 
biological samples on the basis of their metabolite profiles. It 
can deliver an immediate snapshot of the whole physiology of 
an organism. Current technological developments have allowed 
high-throughput profiling of a large number of metabolites in 
biological samples, with increasing applications in disease re-
search (Shah et al., 2012). Metabolomics comprises qualitative 
and quantitative analysis of intracellular and intercellular me-
tabolites using two distinct analytical approaches: (1) non-
targeted metabolite profiling, i.e. identification and characteriza-
tion of a large number of metabolites and their precursors; and 
(2) targeted metabolite profiling, with an emphasis on quantita-
tive variations in metabolites of interest (e.g., amino acids, car-
bohydrates, lipids and nucleotides) based on a prior under-
standing of their biological roles in metabolic pathways 
(Sadanala et al., 2012). 

In this review, we discuss the major metabolite changes ob-
served in obesity and diabetes. The focus is on the altered 
metabolite profiles in each disorder and inter-related disease 
conditions. We also present a short list of metabolites common-
ly associated with both disorders. The concept of our review is 
based on metabolite classes such as amino acids, lipids, car-
bohydrates and nucleotides, in previous studies that proposed 
a cross-sectional relationship between obesity and diabetes. 
 
ANALYTICAL APPLICATIONS IN METABOLOMIC 
STUDIES 

The diversity in the physico-chemical properties of metabolites 
makes metabolomics analysis very challenging. Hence, differ-
ent analytical methodologies are needed and are preferably 
combined with each other (Goodacre et al., 2004). Among the 
analytical techniques that can be used for metabolomics appli-
cations, nuclear magnetic resonance (NMR) spectroscopy and 
mass spectrometry (MS) are the most commonly used. High 
performance liquid chromatography (HPLC), ultra performance 
liquid chromatography (UPLC), gas chromatography (GC) and 
capillary electrophoresis (CE) can detect metabolites within a 
few minutes. Combinations of these advanced techniques with 
MS include GC-MS, liquid chromatography-mass spectrometry 
(LC-MS) and CE-MS. Application of these techniques to 
metabolomics has resulted in some promising outcomes (Carr 
et al., 2011; Chylla et al., 2011; Junot et al., 2010; Lin et al., 
2010; Zhang et al., 2012). As one of the most widely-used 
spectroscopic analytical techniques, NMR can identify and 
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quantify a large number of organic compounds simultaneously 
in the micromolar range. GC-MS has been extensively used for 
metabolomics and offers effective and reproducible analysis. 
However, nonvolatile compounds are not suitable for GC-MS 
analysis. For their separation on a GC column, a derivatization 
reaction is needed to generate volatile compounds. This limits 
the applicability of GC-MS in metabolomics. LC-MS techniques 
have been developed that use a soft ionization method, which 
makes this approach more suitable for routine use. Large-scale 
metabolomic technologies based on LC-MS are increasingly 
gaining attention for their applicability in the diagnosis of human 
disease (Courant et al., 2012). The UPLC-MS technology is 
important in biomolecular research and can be used to quantify 
the functions of signaling and metabolic pathways in a multiplex 
and comprehensive manner. UPLC also permits a more rapid 
analysis (in comparison with HPLC) without loss of resolution. 
CE-MS is a potent and promising high-resolution separation 
technique for charged metabolites in biological fluids (Barbas et 
al., 2011). CE-MS, as an analytical platform, has made sub-
stantial contributions in the progress of metabolomics research. 
Fourier transform mass spectrometry (FTMS) instruments are 
popular as they provide exact quantification (Carr et al., 2011). 
Matrix-assisted laser desorption/ionization mass spectrometry 
(MALDI-MS) is a rapidly evolving analytical tool that can ana-
lyze small molecules (less than 1000 Da; (van Kampen et al., 
2011). Fourier transform ion cyclotron resonance mass spec-
trometry (FTICRMS) may become a potent new technique for 
superior metabolomic analysis (Cho et al., 2015). In addition to 
high-resolution analysis methods, such as NMR and MS, 
metabolomics employs chemometric statistical tools, such as 
partial least squares (PLS) and principal component analysis 
(PCA), to develop an integrated picture of both endogenous 
and xenobiotic metabolism. 
 
Role of metabolomics in investigation of biomarkers in the 
diseases 
Metabolomics studies allow identification of metabolites in-
volved in disease mechanisms by observing metabolite level 
variations in diseased individuals in comparison with healthy 
ones (Cheng et al., 2012; Goek et al., 2012; Newgard et al., 
2009; Pietiläinen et al., 2007; Rhee et al., 2011; Shaham et al., 
2008; Wang et al., 2011; Zhao et al., 2010). Furthermore, the 
metabolic phenotypes of human populations will greatly facili-
tate evaluation of the metabolic response of each patient to 
treatment, making possible personalized clinical treatment. 
Sample-specific metabolomes can be studied, such as serum 
metabolome or liver tissue metabolome. Urine and blood (se-
rum and plasma) are the biofluids that are most often used for 
metabolomics studies because both contain a multitude of de-
tectable metabolites and can be obtained without or with mini-
mal invasion. A number of other fluids such as saliva, bile, gut 
aspirate, cerebrospinal fluid, seminal fluid, amniotic fluid and 
synovial fluid have also been analyzed (Bala et al., 2006; 
Bollard et al., 2005; Gowda et al., 2006). More recently, meta-
bolic profiling of complete tissues and their lipid and aqueous 
metabolites has received more attention for biomarker detec-
tion (Griffin and Kauppinen, 2007). These studies have identi-
fied potential biomarkers or revealed pathophysiology of dis-
eases such as obesity, diabetes, cardiovascular diseases and 
cancers (Beger, 2013; Du et al., 2013). 

Metabolomics has been used for biomarker discovery for a 
number of clinical conditions (Madsen et al., 2010; Vinayavekhin 
et al., 2010). Biomarkers are regularly used in clinical practice to 
measure disease severity and also to provide essential prog-

nostic information related to survival. Biomarkers have also 
been used as alternatives to clinical endpoints both in clinical 
practice and in research settings, predominantly in novel drug 
development. By identifying the definite early biomarkers of 
disease, metabolomics provides better understanding of dis-
ease progression and metabolic pathways (Zhang et al., 2013). 
 
Obesity 
Obesity is a medical condition, in which a large amount of fat 
accumulates in the body to the point that it may decrease the 
life span and result in such health problems as diabetes, cardi-
ovascular disease, as well as bone and joint diseases (Haslam 
and James, 2005; Pataky et al., 2014). Obesity is responsible 
for about 5% of worldwide deaths, and the total economic loss-
es from obesity are approximately $2 trillion, or 2.8% of global 
GDP, equivalent to the worldwide losses from smoking or 
armed violence, war and terrorism. Recently, several metabo-
lites associated with obesity have been identified by metabo-
lomics and confirmed to be disturbed extensively in both animal 
models and humans (Abu Bakar et al., 2015). Obesity affects 
the entire body and evidently involves metabolic variations, but 
the definite changes in metabolism during obesity and dysfunc-
tion of specific organs or cellular organelles related to obesity 
are not yet well understood (Kussmann et al., 2006). As metab-
olomics can swiftly detect subtle alterations in the metabolic 
network, it is exclusively poised to improve our knowledge of 
obesity and diseases related to obesity. 
 
Diabetes 
Diabetes mellitus (DM), usually called diabetes, is a collection 
of metabolic diseases characterized by elevated blood sugar 
levels over an extended period (Nyenwe et al., 2011). If un-
treated, diabetes can trigger many complications (Stolar, 1988). 

It is a chronic disease characterized by chronic hyperglycemia 
because of the absence or shortage of insulin, which may be 
due either to a gradual failure of pancreatic �-cell function and 
subsequently a lack of insulin production (type 1 diabetes, 
T1DM) or to the development of insulin resistance and conse-
quently the loss of �-cell function (type 2 diabetes, T2DM). Us-
ing either animal models or oral glucose tolerance tests, meta-
bolic studies have uncovered alterations in metabolites associ-
ated with pathways involved in the action of insulin, including 
lipolysis, ketogenesis, proteolysis and glucose metabolism 
(Friedrich, 2012). These results have revealed a switch from �-
oxidation to glycolysis and fat storage in response to glucose 
intake. Moreover, metabolomics studies performed on diabetic 
patients and healthy subjects have revealed many significantly 
altered metabolic pathways and metabolic variations (Suhre et 
al., 2010).  
 
METABOLOMICS IN OBESITY AND DIABETES 
 
Metabolomics studies have offered new insights into the etiolo-
gy of obesity and diabetes and individual dissimilarities. The 
identified metabolites and metabolite ratios might be considered 
as potential biomarkers useful to understand obesity-asso- 
ciated pathophysiological processes. A recent epidemiological 
study has found that plasma concentrations of metabolites, 
particularly branched-chain amino acids (BCAAs: isoleucine, 
leucine and valine), are linked to an increased risk of T2DM 
(Newgard et al., 2009). Other novel metabolite classes have 
also been associated with diabetes; these include short- and 
medium-chain acylcarnitines and the following lipid classes: 
sphingomyelins (SMs), lysophosphatidylcholines (LysoPC), 
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phosphatidylcholines (PCs), and lysophosphatidylethanolamines 
(LysoPE). 
 
Amino acid metabolism  
Amino acids (AAs) are important biological compounds, which 
possess carboxylic and amine moieties as functional groups 
and serve as building blocks for proteins. They play key meta-
bolic and physiological roles in all living organisms. It has been 
known that obesity is accompanied by an increase in circulating 
levels of several amino acids, including BCAAs (Chevalier et al., 
2005; Felig et al., 1974; Krebs et al., 2007; Moore and Stein, 
1954; Tremblay et al., 2007; Um et al., 2006). High fasting con-
centrations of BCAAs were found to be associated with obesity 
and low serum insulin levels.  

The association between obesity and amino acid metabolism 
shows important physiological and clinical inferences. The con-
centrations of selected essential amino acids and their deriva-
tives in blood, in specific BCAAs, tyrosine, phenylalanine and 
sulfur amino acids, are evidently changed with obesity (Adams, 
2011). A distinctive metabolic picture related to BCAA catabo-
lism was also found in obese subjects (Newgard et al., 2009). 
Reduced expression of mitochondrial branched chain amino 
transferase in adipose tissue is considered to be a reason for 
the increased levels of BCAAs in obesity (She et al., 2007). 
Decreased levels of glutamine and glycine are found in blood of 
obese individuals in comparison with lean controls (Xie et al., 
2012), which was also observed in another previous study 
(Backman et al., 1975). Changes in the levels of a number of 
compounds involved in amino acid metabolism have been 
found in obese condition (Adams, 2011; Newgard et al., 2009). 
The levels of cysteine, glutamate, phenylalanine, threonine, 
tryptophan, tyrosine, pantothenic acid, �-hydroxyisovaleric acid, 
3-methyl-2-oxobutyric acid, choline, glyceric acid, 2-ketoiso- 
caproic acid, pipecolic acid, kynurenine, serotonin and isovaleryl 
carnitine are increased (Fiehn et al., 2010; Gogna et al., 2015; 
Moore et al., 2014; Zeng et al., 2010), whereas those of methi-
onine, citrulline, 3-methylglutarylcarnitine and acylcarnitine are 
decreased (Kim et al., 2011; Mihalik et al., 2012; Oberbach et 
al., 2011; Wahl et al., 2012). Other metabolites such as, alanine, 
arginine, asparagine, glutamine, glycine, histidine, isoleucine, 
leucine, lysine, proline, valine, carnitines and hydroxycarnitines 
were increased in some studies (Fiehn et al., 2010; Kim et al., 
2010; 2011; Moore et al., 2014; Oberbach et al., 2011; Wahl et 
al., 2012) and decreased in others (Mihalik et al., 2012). 

Increased levels of amino acids can improve insulin secretion 
from primary islet cells and �-cell lines by diverse mechanisms 
(Brennan et al., 2002; Charles and Henquin, 1983; Dixon et al., 
2003; Sener and Malaisse, 1980; Smith et al., 1997). The rela-
tionship between amino acids and insulin resistance has been 
known for decades (Felig et al., 1969; 1974; Gougeon et al., 
2008), but with the arrival of comprehensive metabolomic profil-
ing a more detailed picture emerges of how amino acids con-
tribute to the progression of diabetes. The levels of cysteine, 
pantothenic acid, creatine, acetyl carnitine and butyryl carnitine 
are increased in diabetes patients (Bentley-Lewis et al., 2014; 
Fiehn et al., 2010; Guan et al., 2013; Suhre et al., 2010), whereas 
those of arginine, asparagine, glycine, methionine, citrulline, 
betaine, sarcosine, aspartic acid, benzoic acid, 4-hydroxyproline 
and 5-hydroxykynurenine are decreased (Bentley-Lewis et al., 
2014; Diao et al., 2014; Fiehn et al., 2010; Floegel et al., 2013; 
Liu et al., 2013; Mihalik et al., 2012; Wang-Sattler et al., 2012). 
Other metabolites such as, alanine, glutamate, glutamine, 
histidine, isoleucine, leucine, lysine, phenylalanine, proline, 
serine, threonine, tryptophan, tyrosine, valine, creatinine, 2-

ketocaproic acid, pyroglutamic acid, choline, ornithine, carnitines 
and hydroxycarnitines were increased in some studies (Bentley- 
Lewis et al., 2014; Diao et al., 2014; Fiehn et al., 2010; Floegel et 
al., 2013; Liu et al., 2013; Mihalik et al., 2012; Palmer et al., 2015; 
Salek et al., 2007; Wang et al., 2011; Wang-Sattler et al., 2012; 
Zeng et al., 2010) and decreased in others (Bentley-Lewis et al., 
2014; Diao et al., 2014; Fiehn et al., 2010; Liu et al., 2013; 
Mihalik et al., 2012; Palmer et al., 2015; Salek et al., 2007; 
Zeng et al., 2010). Glutamate and BCAAs are also found in-
creased in T1DM (Oresic et al., 2008). 
 
Lipid metabolism 
Lipids are one of the main source of energy for metabolism. 
Blood lipids, obtained from food intake or from adipose tissue 
and liver, are mainly fatty acid derivatives and cholesterol. Obe-
sity, which is characterized by fat deposits in tissues, is usually 
associated with elevated levels of plasma free fatty acids 
(FFAs) (Golay et al., 1986). Carnitine is an important metabolite 
linked to obesity, due to its involvement in fatty acid metabolism. 
It is well recognized that provision of FFAs can stimulate fatty 
acid oxidation (Randle, 1998). However, fatty acids can yield 
energy only via �-oxidation after esterification and transfer into 
the mitochondrion, which requires carnitine (Cha, 2008). Thus, 
higher levels of plasma FFAs in obesity may require more 
carnitine for effective �-oxidation. Consequently, the amount of 
carnitine in cells is the main factor regulating �-oxidation. Cho-
line is a crucial dietary nutrient that is essential for the mainte-
nance of cellular structure, methyl (one-carbon) metabolism, 
transport and metabolism of cholesterol (Blusztajn, 1998; Zeisel, 
2000). Over 95% of the total choline present in most animal 
tissues is used for PC synthesis by the Kennedy pathway 
(Gibellini and Smith, 2010). The introduction of novel analytical 
and information technologies for management of large volumes 
of data has made it practical to characterize complex mixtures 
of lipids in body fluids and tissues (Lagarde et al., 2003; Wenk, 
2005). Obesity and associated dyslipidemias may be caused by 
several factors (Despres et al., 1992). In obesity, the levels of 
non-essential fatty acids (oleic acid, palmitic acid, palmitoleic 
acid, stearic acid, stearoyl carnitine, 2-hydroxybutanoic acid 
and 3-hydroxybutanoic acid) are increased (Fiehn et al., 2010; 
Gogna et al., 2015; Kim et al., 2011; Moore et al., 2014), 
whereas those of ethanolamine and LysoPEs are decreased 
(Fiehn et al., 2010; Kim et al., 2011). LysoPCs, PCs, cholesteryl 
esters, ceramides, SMs and total fatty acids were increased in 
some studies (Kim et al., 2010; 2011; Moore et al., 2014; 
Pietiläinen et al., 2007; Samad et al., 2006; Wahl et al., 2012) 
and decreased in some others (Kim et al., 2010; 2011; Moore 
et al., 2014; Pietiläinen et al., 2007; Samad et al., 2006; Wahl et 
al., 2012) 

Lipid abnormalities are common in diabetic patients, in par-
ticular in those with T2DM. Both the lipid profile and body fat 
mass have been reported to be the main predictors of metabol-
ic disturbances and critical medical conditions, such as 
dyslipidemia, hypertension, diabetes and cardiovascular dis-
eases (Du et al., 2013). Dyslipidemias make diabetic patients 
susceptible to heart disease and other problems related to 
atherosclerosis. A number of factors are likely to be responsible 
for diabetic dyslipidemia: the effects of insulin on apoprotein 
production in the liver, regulation of lipoprotein lipase, function 
of cholesteryl ester transfer protein and peripheral actions of 
insulin on adipose tissue and muscle (Mooradian et al., 2004; 
2008). In diabetes, the levels of 1-monopalmitin, 1-monostearin, 
1,2-distearoyl phosphatidylserine, ceramide, diacylglycerol, diacyl- 
phosphatidylcholines, fatty-acyl CoA, linoleic acid, myristic acid, 
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oleic acid, palmitic acid, palmitoleic acid, stearic acid, tridecane, 
undecane, triacylglycerol, 2-hydroxybutanoic acid, and aceto- 
acetic acid are increased (Fiehn et al., 2010; Liu et al., 2013; 
Salek et al., 2007; Villarreal-Pérez et al., 2014; Xu et al., 2013; 
Yan et al., 2014; Zeng et al., 2011), whereas those of acyl-alkyl-
phosphatidylcholines and ethanolamine are decreased (Fiehn 
et al., 2010; Floegel et al., 2013; Suhre et al., 2010; Xu et al., 
2013). Phosphatidylcholine, phosphatidylethanolamine, 
sphingomyelin and 3-hydroxybutanoic acid are increased in 
some studies (Drogan et al., 2015; Huang et al., 2011), and 
decreased in others (Floegel et al., 2013; Suhre et al., 2010; Xu 
et al., 2013). Phosphatidylcholine was also found decreased in 
T1DM (Oresic et al., 2008). 
 
Carbohydrate metabolism 
The progress of obesity is often explained by excessive con-
sumption of high-fat and high-calorie diets (Saris, 2003; Siri-
Tarino et al., 2010). Yet, the role of dietary carbohydrates in the 
development and maintenance of obesity is now also receiving 
increasing attention (Boling et al., 2009; Malik et al., 2010; Siri-
Tarino et al., 2010; Wylie-Rosett and Davis, 2009). Obesity is 
associated with a decreased glucose disposal in adipose tissue. 
It has been reported that obesity leads to the development of 
hyperglycemia (Halaas et al., 1995), hyperlipidemia (Yamamoto 
et al., 2002), hyperinsulinemia (Berndt et al., 2005) and insulin 
resistance (Heilbronn et al., 2004). The pathways that metabolize 
carbohydrates include glycolysis, gluconeogenesis, the pentose 
phosphate pathway and the TCA cycle. Carbohydrate metabo-
lism is vital to all metabolic processes. Glucose is catabolised 
via glycolysis to pyruvate, which under aerobic conditions is 
converted into acetyl coenzyme A, the entry point into the TCA 
cycle. Under anaerobic conditions, pyruvate is instead convert-
ed into lactate by lactate dehydrogenase. In obesity, the levels 
of glucose, lactic acid, fructose, glycerol, mannose, sorbitol, 
xylose, gluconic acid and glucuronic acid are increased (Fiehn 
et al., 2010; Gogna et al., 2015; Moore et al., 2014) whereas 
those of 1,5-anhydroglucitol and glycerol-3-phosphate are de-
creased (Fiehn et al., 2010; Moore et al., 2014). 

Glucose concentration in blood reflects carbohydrate me-
tabolism both in healthy people and in diabetics. In diabetes 
management, reduction in carbohydrate intake is the first and 
the most important step (Franz, 2008). Among compounds 
involved in carbohydrate metabolism, the levels of glucose, 
fructose, glycerol, inositol, mannose, sorbitol, xylose, 2,6-
anhydrogalactose, 3,6-anhydrogalactose, gluconic acid, glu- 
curonic acid, isopropanol, fumaric acid, malic acid and cis-
aconitic acid are increased (Drogan et al., 2015; Fiehn et al., 
2010; Gogna et al., 2015; Salek et al., 2007; Suhre et al., 2010; 
Xu et al., 2013; Zeng et al., 2010), whereas those of deoxy- 
galactose, pyruvic acid, 1,5-anhydroglucitol and glycerol-3-
phosphate are decreased in diabetes (Drogan et al., 2015; 
Fiehn et al., 2010; Suhre et al., 2010). Other metabolites such 
as acetic acid, deoxyglucose, lactic acid and citric acid were 
increased in some studies (Diao et al., 2014; Gogna et al., 
2015; Salek et al., 2007; Suhre et al., 2010; Zeng et al., 2010) 
and decreased in others (Diao et al., 2014; Drogan et al., 2015). 
One metabolite, succinic acid is decreased in T1DM, though 
any significant changes are not observed in T2DM (Oresic et al., 
2008). 
 
Nucleotide metabolism 
The study of nucleotide metabolism is vital for understanding of 
energy metabolism disorders, because nucleotides take part in 
most metabolic reactions and also act as coenzymes. Nucleo-

tides are secreted from several body tissues and then build up 
in the blood circulation and other extracellular fluids. Release 
from cells and extracellular degradation both contribute to the 
nucleotide levels in the circulation. Persistently elevated blood 
nucleotide levels and constant purinergic signaling may play a 
pathophysiological role in metabolic disorders (Di Virgilio and 
Solini, 2002; Sellers et al., 2009; Sparks and Chatterjee, 2012). 

Nucleotide levels are extremely variable in obese subjects. 
High nucleotide levels observed in some morbidly obese sub-
jects seem to be associated with the initial stage of insulin re-
sistance (Sparks et al., 2014). Uric acid and uridine are strongly 
increased in obesity (Fiehn et al., 2010; Kim et al., 2011). 

Analysis of the relationship between circulating nucleotide 
concentrations and clinical measures of T2DM demonstrated 
that changes in nucleotide metabolism are direct metabolic 
consequences of the disease and do not result from secondary 
complications (Dudzinska, 2014). In diabetes, compounds in-
volved in nucleotide metabolism, including AMP, GMP, GTP, 
IMP, adenosine, guanosine and inosine are increased in both 
T1DM and T2DM (Dudzinska, 2014; Huang et al., 2011). 
Trimethylamine, glyoxylic acid and uridine are increased only in 
T2DM (Fiehn et al., 2010; Guan et al., 2013; Nikiforova et al., 
2014; Padberg et al., 2014; Salek et al., 2007).  

Besides the metabolites of major metabolic pathways, changes 
in the profiles of some other metabolites have been detected in 
obesity and diabetes. The levels of 3,6-anhydrogalactose, 7-
ketodeoxycholic acid, heptadecanoic acid, inulobiose and 
myoinositol are increased, whereas those of, benzylalcohol, 
and a few glycerophospholipids are decreased in obesity (Fiehn 
et al., 2010; Gogna et al., 2015; Kim et al., 2011; Moore et al., 
2014; Pietiläinen et al., 2007). The levels of cholesteryl-�-D-
glucoside, dimethylamine, dimethylglucosamine, fructosamine 
and glycocholic acid are increased (Drogan et al., 2015; Fiehn 
et al., 2010; Huang et al., 2011; Liu et al., 2013; Padberg et al., 
2014; Salek et al., 2007; Suhre et al., 2010).  
 
 
METABOLITES SHOWING ALTERED  
CONCENTRATIONS IN BOTH OBESITY AND DIABETES 
 
Obesity and diabetes have many similar causes and are relat-
ed. These disorders often occur together, and most patients 
with T2DM are obese or were previously obese (Bray, 2004; 
Stumvoll et al., 2005). Obesity is usually considered as to 
strongly increase the risk of the later development of diabetes. 
The question arises whether obesity is not only a risk factor but 
also a cause of T2DM. A strong increase in obesity initiates a 
parallel upward trend in the incidence of diabetes. According to 
Ford et al. (1997) for every kilogram of weight gain, the risk of 
diabetes increases by between 4.5% and 9%. The relationship 
between obesity and insulin resistance is probably a cause-
and-effect relationship, since human and animal studies show 
that weight loss or gain is closely associated with an increase 
or decrease in insulin sensitivity, respectively (Bak et al., 1992; 
Freidenberg et al., 1988; Sims et al., 1973). Longitudinal stud-
ies have shown that people with a genetic predisposition to 
compromised insulin secretion develop diabetes when they 
have developed insulin resistance due to obesity. Hence, T2DM 
develops once insulin secretion deteriorates to a level at which 
it cannot further compensate for insulin resistance. Also, in a 
longitudinal study of normal glucose tolerance offspring of two 
diabetic parents, Warram et al. (1990), revealed that patients 
presenting insulin resistance and extreme body weight were at 
increased risk of developing T2DM. 
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Table 1. List of the metabolites changed in both obesity and diabetes 

Category Metabolites Origin Sample type 
Up/ 

Down
Platform References 

Amino acid 

metabolism 

Asparagine human serum/plasma   Bentley-Lewis et al., 2014; Moore et al., 2014 

Citrulline human serum/plasma   Mihalik et al., 2012; Oberbach et al., 2011 

Glycine human serum/plasma   Fiehn et al., 2010; Floegel et al., 2013; Mihalik et al., 2012; 

Palmer et al., 2015; Wang-Sattler et al., 2012  

Methionine human serum/plasma   Bentley-Lewis et al., 2014; Mihalik et al., 2012 

Choline human serum   Gogna et al., 2015 

Cysteine human plasma   Bentley-Lewis et al., 2014; Fiehn et al., 2010 

Glutamine human serum/plasma/

urine 

 Gogna et al., 2015; Oberbach et al., 2011; Salek et al., 2007; 

Xu et al., 2013; Zeng et al., 2011 

Isoleucine human serum/plasma  Gogna et al., 2015; Moore et al., 2014; Suhre et al., 2010; 

Wang et al., 2011; Xu et al., 2013; Zeng et al., 2011 

Leucine human serum/plasma  Fiehn et al., 2010; Gogna et al., 2015; Kim et al., 2010;  

Moore et al., 2014; Oberbach et al., 2011; Palmer et al., 

2015; Suhre et al., 2010; Villarreal-Pérez et al., 2014;  

Wang et al., 2011; Xu et al., 2013; Zeng et al., 2011 

Pantothenic acid human serum   Gogna et al., 2015, Suhre et al., 2010 

rodent serum   Kim et al., 2011 

Phenylalanine human serum/plasma  Floegel et al., 2013; Gogna et al., 2015; Moore et al., 2014;

Oberbach et al., 2011, Palmer et al., 2015; Wang et al.,  

2011; Xu et al., 2013 

Proline human serum  Gogna et al., 2015; Oberbach et al., 2011; Xu et al., 2013 

Threonine human serum   Gogna et al., 2015 

Tryptophan human serum/plasma   Kim et al., 2010; Wang et al., 2011 

Tyrosine human serum/plasma   Kim et al., 2010; Moore et al., 2014; Oberbach et al., 2011; 

Villarreal- Pérez et al., 2014; Wang et al., 2011 

rodent serum   Kim et al., 2011 

Valine human serum/plasma  Gogna et al., 2015; Kim et al., 2010; Moore et al., 2014;  

Oberbach et al., 2011; Palmer et al., 2015; Suhre et al.,  

2010; Villarreal- Pérez et al., 2014; Wang et al., 2011;  

Xu et al., 2013 

Lipid 

metabolism 

Ethanolamine human plasma   Fiehn et al., 2010 

Lysophosphatidylcholine  

C18:2 

human serum   Floegel et al., 2013; Wahl et al., 2012; Wang-Sattler et al., 

2012 

Lysophosphatidylethanolamine human plasma   Liu et al., 2013 

rodent serum   Kim et al., 2011 

Sphingomyelin human serum   Floegel et al., 2013; Xu et al., 2013 

rodent adipose tissue/

plasma 

  Samad et al., 2006 

2-hydroxybutanoic acid human serum   Fiehn et al., 2010; Moore et al., 2014 

3-hydroxybutanoic acid human serum   Fiehn et al., 2010; Gogna et al., 2015; Kim et al., 2010;  

Moore et al., 2014; Salek et al., 2007; Suhre et al., 2010; 

Zeng et al., 2011 

Oleic acid human serum/plasma   Fiehn et al., 2010; Liu et al., 2013; Xu et al., 2013; 

Yi et al., 2006; Zeng et al., 2011 

Palmitic acid human serum/plasma   Fiehn et al., 2010; Xu et al., 2013; Yi et al., 2006; 

Zeng et al., 2011 

Palmitoleic acid human plasma   Fiehn et al., 2010 

Phosphatidylcholine human serum   Drogan et al., 2015; Pietiläinen et al., 2007 

rodent liver/serum   Huang et al., 2011; Kim et al., 2011 

Stearic acid human serum/plasma   Fiehn et al., 2010; Xu et al., 2013; Yi et al., 2006; 

Zeng et al., 2011 

(continued) 
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Table 1. List of the metabolites changed in both obesity and diabetes 

Category Metabolites Origin Sample type
Up/ 

Down
Platform References 

Carbohydrate 

metabolism 

1,5-anhydroglucitol human serum  Drogan et al., 2015; Moore et al., 2014; Suhre et al., 2010 

Glycerol-3-phosphate human plasma   Fiehn et al., 2010 

Fructose human serum/plasma   Fiehn et al., 2010; Xu et al., 2013 

Glucose human serum/plasma  Drogan et al., 2015; Fiehn et al., 2010; Gogna et al., 2015 

Glycerol human serum   Gogna et al., 2015; Moore et al., 2014 

rodent serum   Diao et al., 2014 

Gluconic acid human plasma   Fiehn et al., 2010 

Glucuronic acid human serum/plasma   Fiehn et al., 2010; Suhre et al., 2010 

Lactic acid human serum/plasma   Gogna et al., 2015; Wang et al., 2011; Zeng et al., 2011 

Mannose human serum   Moore et al., 2014; Xu et al., 2013 

Sorbitol human serum   Gogna et al., 2015 

Xylose human plasma   Fiehn et al., 2010 

Nucleotide 

metabolism 

Uridine human plasma   Fiehn et al., 2010 

, NMR; , LC/MS; , GC/MS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Summary of the metabolites changed in obesity and diabetes 
 
 
 

Several investigations have linked the phenotype and me-
tabolism and identified serum or plasma metabolic markers that 
are involved independently in developing obesity (He et al., 

2012; Williams et al., 2006) and diabetes (Bao et al., 2009; 
Chen et al., 2009). The occurrence of diabetes is positively 
associated with increased BMI across several ethnic groups 
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(Chan et al., 2009; Maskarinec et al., 2009). Thirty nine me-
tabolites are associated with both diabetes and high BMI or 
obesity (Table 1). Among compounds involved in amino acid 
metabolism, the levels of BCAAs, cysteine, glutamine, phenyl-
alanine, proline, tyrosine, threonine, tryptophan, choline and 
pantothenic acid are increased, whereas those of asparagine, 
glycine, methionine and citrulline are decreased in both obesity 
and diabetes. Among compounds involved in lipid metabolism, 
the levels of 2-hydroxybutanoic acid, 3-hydroxybutanoic acid, 
phosphatidylcholine, stearic acid, oleic acid, palmitic acid and 
palmitoleic acid are increased, whereas those of ethanolamine, 
lysophosphatidylcholine 18:2, lysophosphatidylethanolamine 
and sphingomyelin are decreased. Among compounds in-
volved in carbohydrate metabolism, the levels of fructose, glyc-
erol, mannose, xylose, sorbitol, lactate, glucose, gluconic acid 
and glucuronic acid are increased, whereas those of 1,5-
anhydroglucitol and glycerol-3-phosphate are decreased. 
Among compounds involved in nucleotide metabolism, the level 
of uridine is increased. All these metabolites along with the 
references are categorized and summarized in Table 1. 
 
STRENGH AND LIMITATIONS 
 
This study summarizes the major metabolites, metabolite clas-
ses and pathways associated with obesity and diabetes with a 
focus on metabolites associated with both disorders. The study 
also discusses some aspects of the development of these dis-
orders and transformation of obesity into a diabetic state. Over-
all, metabolomics research can provide comprehensive infor-
mation about metabolite changes in the studied disease using 
various sample types in minimum quantities and in a very short 
time. The limitations of the reviewed studies were the differ-
ences in the analytical platforms used, gender, age, diet, ethnic-
ity and the source species of the samples, which may have led 
to some misinterpretations in the assessment. Other unknown 
diseases may also affect the outcome of metabolomics studies.  
 
CONCLUSION 
 
Obesity and diabetes are well-known to be associated. This 
study provides information on all major metabolites associated 
with obesity and diabetes and also common metabolites asso-
ciated with both disorders. The classification and changes in 
metabolites in each comparison have been represented in Fig. 
1. These metabolites can be considered as biomarkers for 
metabolomics studies of obesity and diabetes and can be a 
focus area of future research. This study can also provide some 
therapeutic clues for treatment of obesity-related diabetes. 
Further studies are required to test whether the selected me-
tabolites might be useful as diagnostic tools and to reveal the 
biological mechanisms that result in changes in the levels of 
certain metabolites in the pathogenesis of these metabolic dis-
eases. 
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