• 제목/요약/키워드: Potential barrier height

검색결과 54건 처리시간 0.026초

Pd/다결정 3C-SiC 쇼트키 다이오드형 수소센서의 제작 (Fabrication of Pd/poly 3C-SiC Schottky diode hydrogen sensors)

  • 정동용;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.236-236
    • /
    • 2009
  • This paper describes the fabrication and characteristics of Schottky micro hydrogen sensors for high temperatures by using polycrystalline(poly) 3C - SiC thin film grown on Si substrates with thermal oxide layer using APCVD. Pd/poiy 3C-SiC Schottky diodes were made and evaluated by I-V and C-V measurements. Electric current density and barrier height voltage were $2\times10^{-3}\;A/cm^2$ and 0.58 eV, respectively. These devices could operate stably at about $400^{\circ}C$. According to $H_2$ concentrations, their barrier height($\Phi_{Bn}$) were changed 0.587 eV, 0.579 eV, 0.572 eV and 0.569 eV, respectively. the current was increased. Characteristics of implemented sensors have been investigated in terms of sensitivity, linearity of response, response rate and response time. Therefore, from these results, Pd/poly 3C-SiC Schottky devices have very high potential for high temperature chemical sensor applications.

  • PDF

방음벽 상단 소음저감장치의 감음성능 평가방법 연구 (A Study on the Test Method for Noise Reduction Devices Installed on the Noise Barriers)

  • 김철환;장태순;김득성;김동준;장서일
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.791-796
    • /
    • 2010
  • Installing noise barriers is the most common method for reducing the highway traffic noise to the road side residential area. After the report about edge potential concept of a noise barrier, various types of noise reducing devices(NRDs) called "noise reducers" have been suggested for getting more shielding effect on the top of highway noise barriers. But, it has been doubtful about effect of the NRDs in field because there was no appropriate and unified method to estimate the acoustic performance by using field measurement of the NRDs in Korea. In this study, the authors have considered to setup a practical method to test and estimate the acoustic performance of NRDs. For eliminating the noise reduction effect of the NRDs height itself, the source and measuring points are adjusted as highly as the NRDs height. For the frequency weighting in the estimation of the NRDs effect, the highway noise spectra were measured at asphalt and concrete road side and then averaged for a unit spectral parameter.

폴리프로필렌 필름의 전도현상 (Conduction Phenomena of the Polypropylene Film)

  • 이준욱;김용주;김봉협
    • 대한전기학회논문지
    • /
    • 제34권9호
    • /
    • pp.349-354
    • /
    • 1985
  • The conducting currents of polypropylene film was measured a function with electric fields at temperature of 25,35,45( C). It appears that there are four regions of conducting currents, depending upon the strength of the applied electric field` ohmic region based on ionic conduction, Poole-Frenkel region, Schottky region and negative resistance region. Several information of dielectric constant and potential barrier height were obtained.

  • PDF

비대칭 DGMOSFET에서 채널길이와 두께 비에 따른 DIBL 의존성 분석 (Dependence of Drain Induced Barrier Lowering for Ratio of Channel Length vs. Thickness of Asymmetric Double Gate MOSFET)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.1399-1404
    • /
    • 2015
  • 본 연구에서는 비대칭 이중게이트 MOSFET의 채널길이와 채널두께의 비에 따른 드레인 유도 장벽 감소 현상의 변화에 대하여 분석하고자한다. 드레인 전압이 소스 측 전위장벽에 영향을 미칠 정도로 단채널을 갖는 MOSFET에서 발생하는 중요한 이차효과인 드레인 유도 장벽 감소는 문턱전압의 이동 등 트랜지스터 특성에 심각한 영향을 미친다. 드레인 유도 장벽 감소현상을 분석하기 위하여 포아송방정식으로부터 급수형태의 전위분포를 유도하였으며 차단전류가 10-7 A/m일 경우 비대칭 이중게이트 MOSFET의 상단게이트 전압을 문턱전압으로 정의하였다. 비대칭 이중게이트 MOSFET는 단채널 효과를 감소시키면서 채널길이 및 채널두께를 초소형화할 수 있는 장점이 있으므로 본 연구에서는 채널길이와 두께 비에 따라 드레인 유도 장벽 감소를 관찰하였다. 결과적으로 드레인 유도 장벽 감소현상은 단채널에서 크게 나타났으며 하단게이트 전압, 상하단 게이트 산화막 두께 그리고 채널도핑 농도 등에 따라 큰 영향을 받고 있다는 것을 알 수 있었다.

Scanning Kelvin Probe Microscopy를 이용한 SiC 소자의 분석 (Scanning Kelvin Probe Microscopy analysis of silicon carbide device structures)

  • 조영득;하재근;고중혁;방욱;김상철;김남균;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.132-132
    • /
    • 2008
  • Silicon carbide (SiC) is an attractive material for high-power, high-temperature, and high-frequency applications. So far, atomic force microscopy (AFM) has been extensively used to study the surface charges, dielectric constants and electrical potential distribution as well as topography in silicon-based device structures, whereas it has rarely been applied to SiC-based structures. In this work, the surface potential and topography distributions SiC with different doping levels were measured at a nanometer-scale resolution using a scanning kelvin probe force microscopy (SKPM) with a non-contact mode AFM. The measured results were calibrated using a Pt-coated tip and a metal defined electrical contacts of Au onto SiC. It is assumed that the atomically resolved surface potential difference does not originate from the intrinsic work function of the materials but reflects the local electron density on the surface. It was found that the work function of the Au deposited on SiC surface was higher than that of original SiC surface. The dependence of the surface potential on the doping levels in SiC, as well as the variation of surface potential with respect to the schottky barrier height has been investigated. The results confirm the concept of the work function and the barrier heights of metal/SiC structures.

  • PDF

티타니아 입자의 응집에 대한 컴퓨터 시뮬레이션 (Computer simulation of titania particle agglomeration)

  • Kim, Jong-Cheol;Auh, Keun-Ho
    • 한국결정성장학회지
    • /
    • 제10권1호
    • /
    • pp.23-29
    • /
    • 2000
  • 30 nm의 입자반경을 가지는 티타니아 입자의 응집을 콜로이드 안정성에 기초하여 컴퓨터 시뮬레이션하였다. 제타 포텐셜이 4.5에서 16.8 mV로 증가할 때 에너지 장벽이 높아진다. 이러한 경향은 실험에서 입자크기가 작을수록 포텐셜이 높을수록 입자가 응집이 적어지는 안정한 상태가 되어 건조시에 불규칙한 형상과 강한 입자간 결합을 형성한다는 실험실적 관찰 결과와 일치한다.

  • PDF

Short Channel SB-FETs의 Schottky 장벽 Overlapping (Schottky barrier overlapping in short channel SB-MOSFETs)

  • 최창용;조원주;정홍배;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

비대칭 이중게이트 MOSFET에 대한 DIBL의 채널도핑농도 의존성 (Dependence of Channel Doping Concentration on Drain Induced Barrier Lowering for Asymmetric Double Gate MOSFET)

  • 정학기
    • 한국정보통신학회논문지
    • /
    • 제20권4호
    • /
    • pp.805-810
    • /
    • 2016
  • 본 논문에서는 비대칭 이중게이트 MOSFET의 채널 내 도핑농도에 대한 드레인 유도 장벽 감소 현상에 대하여 분석하고자한다. 드레인 유도 장벽 감소 현상은 드레인 전압에 의하여 소스 측 전위장벽이 낮아지는 효과로서 중요한 단채널 효과이다. 이를 분석하기 위하여 포아송방정식을 이용하여 해석학적 전위분포를 구하였으며 전위분포에 영향을 미치는 채널도핑 농도뿐만이 아니라 상하단 산화막 두께, 하단 게이트 전압 등에 대하여 드레인 유도 장벽 감소 현상을 관찰하였다. 결과적으로 드레인 유도 장벽 감소 현상은 채널도핑 농도에 따라 큰 변화를 나타냈다. 채널길이가 25 nm 이하로 감소하면 드레인 유도 장벽 감소 현상은 급격히 상승하며 채널도핑농도에도 영향을 받는 것으로 나타났다. 산화막 두께가 증가할수록 도핑농도에 따른 드레인유도장벽감소 현상의 변화가 증가하는 것을 알 수 있었다. 채널도핑 농도에 관계없이 일정한 DIBL을 유지하기 위하여 상단과 하단의 게이트 산화막 두께가 반비례하는 것을 알 수 있었다. 또한 하단게이트 전압은 그 크기에 따라 도핑농도의 영향이 변화하고 있다는 것을 알 수 있었다.

Potential Accuracy of GNSS PPP- and PPK-derived Heights for Ellipsoidally Referenced Hydrographic Surveys: Experimental Assessment and Results

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Yunsoo;Ham, Geonwoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제6권4호
    • /
    • pp.211-221
    • /
    • 2017
  • Ellipsodially referenced survey (ERS) is considered as one of the challenging issues in the hydrographic surveys due to the fact that the bathymetric data collected by this technique can be readily transformed either to the geodetic or the chart datum by application of some geoscientific models. Global Navigation Satellite Systems (GNSS) is a preferred technique to determine the ellipsoidal height of a vessel reference point (RP) because it provides cost-effective and unprecedentedly accurate positioning solutions. Especially, the GNSS-derived heights include heave and dynamic draft of a vessel, so as for the reduced bathymetric solutions to be potentially free from these corrections. Although over the last few decades, differential GNSS (DGNSS) has been widely adopted in the bathymetric surveys, it only provides limited accuracy of the vertical component. This technical barrier can be effectively overcome by adopting the so-called GNSS carrier phase (CPH) based techniques, enhancing accuracy of the height solution up to few centimeters. From the positioning algorithm standpoint, the CPH-based techniques are categorized under absolute and relative positioning in post-processing mode; the former is precise point positioning (PPP) correcting errors by the global or regional models, the latter is post-processed kinematic positioning (PPK) that uses the differencing technique to common error sources between two receivers. This study has focused on assessment of achievable accuracy of the ellipsoidal heights obtained from these CPH-based techniques with a view to their applications to hydrographic surveys where project area is, especially, few tens to hundreds kilometers away from the shore. Some field trials have been designed and performed so as to collect GNSS observables on static and kinematic mode. In this paper, details of these tests and processed results are presented and discussed.

Ceramic PTC thermistor의 금속접촉저항과 입계전위장벽 (Analysis on Metal Contact Resistance and Grain Boundary Barrier Height of Ceramic PTC Thermistor)

  • 전용우;임병재;홍상진;소대화
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.235-236
    • /
    • 2006
  • The contact resistance and grain boundary potential barrier of ceramic $BaTiO_3$ PTCR were investigated. The electroless plated Ni, evaporated Al, and Ag paste were chosen as electrode materials of PTCR device for comparison analysis before and after heat treatment. The contact resistance of electrode were measured by electrometer (dc), digital multimeter (dc), and LCR meter (ac). In the case of Al electroded samples, the heat treatment and protective oxide layer had high resistance and effect on the stability of PTCR effect against contact resistance degradation, but the Ag-paste had comparably high contact resistance before heat treatment and decreased after heat treatment with safe. On the other hand, the samples with electroless plated Ni electrode had good properties of contact resistance against aging.

  • PDF