• Title/Summary/Keyword: Potential Field Method

Search Result 1,021, Processing Time 0.029 seconds

A study on the relationships between plasma parameters and magnetic field (플라즈마 파라메타와 자계의 상관관계에 관한 연구)

  • 김두환;장윤석;조정수;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.3
    • /
    • pp.426-431
    • /
    • 1996
  • It is well known that the understanding of the complex mechanism of magnetoplasma is closely related with understanding of the collective behavior of discharge plasma parameters such as the cathode-sheath potential, cathode-sheath thickness, electron temperature, electron density, and ambipolar diffusion. In this paper, some of the relationships between these plasma parameters and magnetic field is investigated experimentally with a Langmuir probe in the magnetoplasma generated by D.C diode system. It is found that when magnetic field is increased, cathode-sheath potential, cathode-sheath thickness, and ambipolar diffusion are decreased. In addition, peak ion density obtained as a parameter of ionic signal voltage by Faraday cup method is independent of magnetic field. (author). 9 refs., 11 figs.,1 tab.

  • PDF

Parameter Selecting in Artificial Potential Functions for Local Path Planning

  • Kim, Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.339-346
    • /
    • 2005
  • Artificial potential field (APF) is a widely used method for local path planning of autonomous mobile robot. So far, many different types of APF have been implemented. Once the artificial potential functions are selected, how to choose appropriate parameters of the functions is also an important work. In this paper, a detailed analysis is given on how to choose proper parameters of artificial functions to eliminate free path local minima and avoid collision between robots and obstacles. Two kinds of potential functions: Gaussian type and Quadratic type of potential functions are used to solve the above local minima problem respectively. To avoid local minima occurred in realistic situations such as 1) a case that the potential of the goal is affected excessively by potential of the obstacle, 2) a case that the potential of the obstacle is affected excessively by potential of the goal, the design guidelines for selecting appropriate parameters of potential functions are proposed.

Electrical analysis of Metal-Ferroelectric - Semiconductor Field - Effect Transistor with SPICE combined with Technology Computer-Aided Design (Technology Computer-Aided Design과 결합된 SPICE를 통한 금속-강유전체-반도체 전계효과 트랜지스터의 전기적 특성 해석)

  • Kim, Yong-Tae;Shim, Sun-Il
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.59-63
    • /
    • 2005
  • A simulation method combined with the simulation program with integrated circuit emphasis (SPICE) and the technology computer-aided design (TCAD) has been proposed to estimate the electrical characteristics of the metal-ferroelectric-semiconductor field effect transistor (MFS/MFISFET). The complex behavior of the ferroelectric property was analyzed and surface potential of the channel region in the MFS gate structure was calculated with the numerical TCAD method. Since the calculated surface potential is equivalent with the surface potential obtained with the SPICE model of the conventional MOSFET, we can obtain the current-voltage characteristics of MFS/MFISFET corresponding to the applied gate bias. Therefore, the proposed method will be very useful for the design of the integrated circuits with MFS/MFISFET memory cell devices.

  • PDF

A Study of Stability for Field Robot using Energy Stability Level Method (에너지안정성 레벨을 이용한 필드로봇의 안정성에 관한 연구)

  • Nguyen, C.T.;Le, Q.H.;Jeong, Y.M.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.22-30
    • /
    • 2014
  • In this research, the energy stability level method is used for examining the stable state of Field Robot under effects of swing motion, at particular postures of manipulator, and terrain conditions. The energy stability level is calculated by using the dynamic models of Field Robot, subjected to the concept of equilibrium plane and support boundary. The results, simulated by using computing program for estimating the potential overturning of Field Robot, supply useful predictions of stability analysis for designers and operators.

Recovery of Diatom Skeleton from Low Grade Diatomaceous Earth by Shape Separation Method Using Fluid Field

  • Lee, Minyong;Yoon, Ki-Byung;Shigehisa Endoh
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.349-352
    • /
    • 2001
  • Shape separation method - a separation process which utilizes the fact that particles of different shape behave differently in force fields- is regarded as an useful measure for recycling, mineral processing, upgrading powdered material and so on. In this study, a trial was given to shape separation method using fluid field to recover pure diatom skeleton - which is thought to have many uses in itself and potential for various applications -from low grade diatomaceous earth of southeastern part of the Korean Peninsula. The striking difference of shape between diatom skeleton and other minerals like clay and quartz made it natural to choose shape separation method. Considering the size of particles to be separated, among many possible methods of shape separation, hydrodynamic field using hydrocyclone was adopted. And it resulted in recovery of pure diatom skeleton with high purity

  • PDF

3-Dimensional Magnetic Field Analysis of Coil Using Biot-Savart Law Considering Singularity (특이점이 고려된 비오-사바르법을 이용한 3차원 코일의 자계 해석)

  • Song, Ho-Jun;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.104-106
    • /
    • 2005
  • In this paper, 3-dimensional magnetic field of coil is analyzed by using biot-sarvart law considering singularity. The RMSP(reduced magnetic scalar potential) arc employed in order to reduce the number of unknown variables in FEM(Finte Element Analysis) or BEM(Boundary Element Method). It Is necessary to calculate magnetic field of souce current when RMSP is used. Biot-savart law is generally used. it is difficult to calculate the field when the source point is in inside the coil. To integrate using gaussian quadrature, the cross section of coil is divided considering the position of field point when field point is inside coil. The proposed method shows good agreement of magnetic field compared with FEMLAB, OPERA3D.

  • PDF

Estimation of Daily Potential Evapotranspiration in Paddy Field Using Meteorological Data (기상자료를 이용한 논의 일 잠재증발산량 추정)

  • Noh, Jae-Kyoung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.5-8
    • /
    • 2002
  • Daily potential evapotranspiration was estimated using meteorological data which are observing regularly such as rainfall, temperature, humidity, wind speed, and duration of sunshine. Penman method is used practically in estimating evapotranspiration at present, and its regional coefficients were derived at 19 stations in the Korean Peninsular. Because meteorological data are observing at 77 stations under the Korea Meteorological Administration, the methodology of estimating evapotranspiration using meteorological data will be able to be applied in more regions than Penman method.

  • PDF

A Study on the Measurement of Grounding Resistance Using the Fall-of-Potential Method (전위강하법을 이용한 접지저항 측정법 개선에 관한 연구)

  • Park, Duk-Yul;Wee, Won-Seok;Ryu, Bo-Hyuk;Kim, Jung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1490-1492
    • /
    • 1999
  • This paper shows the accuracy of 61.8% rule which is based on the fall-of-potential method in field measurement of earth resistances, and proposes the measurement method which is applicable to the industries. This paper also finds the minimum distance to obtain the horizontal position in the earth resistance curves, and Proposes the standard form for measurement of earth resistance using the fall-of-Potential method.

  • PDF

A New Method for Coronal Force-Free Field Computation That Exactly Implements the Boundary Normal Current Density Condition

  • Yi, Sibaek;Jun, Hongdal;Lee, Junggi;Choe, G.S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.71.3-71.3
    • /
    • 2019
  • Previously we developed a method of coronal force-free field construction using vector potentials. In this method, the boundary normal component of the vector potential should be adjusted at every iteration step to implement the boundary normal current density, which is provided by observations. The method was a variational method in the sense that the excessive kinetic energy is removed from the system at every iteration step. The boundary condition imposing the normal current density, however, is not compatible with the variational procedure seeking for the minimum energy state, which is employed by most force-free field solvers currently being used. To resolve this problem, we have developed a totally new method of force-free field construction. Our new method uses a unique magnetic field description using two scalar functions. Our procedure is non-variational and can impose the boundary normal current density exactly. We have tested the new force-free solver for standard Low & Lou fields and Titov-Demoulin flux ropes. Our code excels others in both examples, especially in Titov-Demoulin flux ropes, for which most codes available now yield poor results. Application to a real active region will also be presented.

  • PDF

Study of Surface Treatments on Field Emission Properties for Triode-Type Carbon Nanotube Cathodes (3극형 탄소나노튜브 캐소드의 전계방출 특성에 미치는 표면처리에 관한 연구)

  • Lee, Ji-Eon;An, Young-Je;Lee, Je-Hyun;Chung, Won-Sub;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.173-178
    • /
    • 2007
  • Carbon nanotube cathodes(CNT cathodes) with a trench structure similar to gated structure of triode-type cathode were fabricated by a screen printing method using multi-walled carbon nanotubes. The effects of surface treatments on CNT cathodes were investigated for high efficiency field emission displays(FEDs). A liquid method easily removed the organic residue and protruded the CNTs. Field emission properties were measured by using a diode-type mode. The liquid method produced a turn-on field of $1.4V/{\mu}m$. The emission current density was measured about $3.1mA/cm^{2}$ at the electric field of $3V/{\mu}m$. The liquid method showed a high potential applicable to the surface treatment for triode-type FEDs.