• Title/Summary/Keyword: Potential Drop

Search Result 342, Processing Time 0.026 seconds

Evaluation of Surface Crack and Blind Crack by Induced Current Focusing Potential Drop(ICFPD) Technique (집중유도형 교류전위차법에 의한 표면결함 및 이면결함의 평가에 관한 연구)

  • Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 1996
  • In the life management safety evaluation of constructs base on a fracture mechanics, the size of defect is the very important parameter. ICFPD (Induced Current Focusing Potential Drop)technique has been developed for detecting and sizing of defects that exist not only on surface but also inside and interior of structural components. The principle of this technique is to induce a focusing current at an exploration region by a straight induction wire through which an alternating current (AC)flows that has constant amplitude and frequency. The potential distributed on the surface of metallic material is measured by potential pick-up pins that are settled on the probe. In this paper, this NDI technique was applied to the evaluation of surface cracks and blind cracks in plate specimens. The results of this study show that in the case of surface crack, the distribution of potential drop is varied with the inched angle of surface crack, and the potential drops in the crack region and the crack edge region are varied with the inclined angle and depth of crack. The distribution of potential drop for the blind crack is distingulished from that for the surface crack, and the potential drop in the crack region is varied with the depth of crack.

  • PDF

A Study on the Amendments of the Cathodic Protection Criteria Considering IR Drops (전압강하를 고려한 전기방식 기준 개정에 관한 연구)

  • Ryou, Young-don;Lee, Jin-han;Jo, Young-do;Kim, Jin-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.4
    • /
    • pp.50-57
    • /
    • 2016
  • According to the urban gas business legislation, cathodic protection systems should be applied for buried steel gas pipelines to prevent corrosion. In advanced countries including United States, the criteria for Cathodic Protection Potential is at least -850mV with respect to a saturated copper/copper sulfate electrode(CSE) when the CP applied, and the IR drops must be considered for valid interpretation. However, the IR drop through the pipe to soil boundary has been neglected in Korea. According to KGS code, a reference electrode must be placed in proximity to gas pipelines possible when measuring the CP potential. In this study, we have installed several solid reference electrodes around the buried pipeline(1.2m depth), lower surface(0.5m depth), and the surface individually in order to measure the CP potentials through the each reference electrode and find out the IR drops according to the location of each reference electrode. We have found the IR drop is the greatest when measuring the CP potential through the electrode placed on the ground and the IR drop is the smallest through the electrode installed near pipeline. Therefore, we have suggested the solid reference electrode should be installed as close as possible to buried pipeline in order to measure the correct CP potential without IR drop. We have also suggested the amendment of CP criteria considering IR drop.

Pipe thinning model development for direct current potential drop data with machine learning approach

  • Ryu, Kyungha;Lee, Taehyun;Baek, Dong-cheon;Park, Jong-won
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.784-790
    • /
    • 2020
  • The accelerated corrosion by Flow Accelerated Corrosion (FAC) has caused unexpected rupture of piping, hindering the safety of nuclear power plants (NPPs) and sometimes causing personal injury. For the safety, it may be necessary to select some pipes in terms of condition monitoring and to measure the change in thickness of pipes in real time. Direct current potential drop (DCPD) method has advantages in on-line monitoring of pipe wall thinning. However, it has a disadvantage in that it is difficult to quantify thinning due to various thinning shapes and thus there is a limitation in application. The machine learning approach has advantages in that it can be easily applied because the machine can learn the signals of various thinning shapes and can identify the thinning using these. In this paper, finite element analysis (FEA) was performed by applying direct current to a carbon steel pipe and measuring the potential drop. The fundamental machine learning was carried out and the piping thinning model was developed. In this process, the features of DCPD to thinning were proposed.

The Relative Levels of Grit and Their Relationship with Potential Dropping-Out and University Adjustment of Foreign Students in Korea (Korea유학생의 grit 수준과 잠재적 중도탈락 및 대학생활적응과의 관계)

  • Slick, Sheri N.;Lee, Chang Seek
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.61-66
    • /
    • 2014
  • The study aimed to investigate the relative levels of grit and their relationship with potential dropping-out and university adjustment of foreign students in Korea. The subjects of this survey were gathered through purposive sampling, and 335 subjects were collected from university students in South Korea. First, the grit was significantly and positively correlated with emotional adjustment, social adjustment, university satisfaction, and academic adjustment, and was negatively correlated with potential dropping-out of university. Drop-out potential is negatively and significantly correlated with all subgroups of university life adjustment. Second, the grit is higher than the mid-point and drop-out potential is very low. Emotional adjustment and university satisfaction are the highest among the subgroups of university life adjustment but social adjustment is the lowest among them. Third, it was found that foreign students in the mid and high grit clusters are lower in mean drop-out potential rates than those in the low grit cluster. And foreign students in the mid and high grit clusters are higher than those students in the low university life adjustment group.

An Electrochemical Evaluation on the Crevice Corrosion of 430 Stainless Steel with Variation of Crevice Wide by Micro Capillary Tubing Method (Micro Capillary Tube 방법을 이용한 430 스테인레스강 틈의 폭변화에 따른 틈부식의 전기화학적 평가)

  • Na, Eun-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.250-254
    • /
    • 2003
  • In this study, the IR drop theory was adopted to explain the initiation of crevice corrosion in the framework of IR drop in crevice electrolyte. Furthermore, the electrochemical polarization was measured to study the mechanism of crevice corrosion for type STS430 stainless steel. lest method adopts under condition that the size of specimen is $10\times20\times5mm,\;in\;1N\;H_2SO_4+0.1N\;NaCl$ solution, and the artificial crevice gap sizes are three kinds, the Micro capillary tube size is inner diameter 0.04 mm, outer diameter 0.08 mm. Crevice corrosion is measured under the applied voltage of passivation potential -200mV/SCE, resulted from anodic potentio-dynamic polarization to the external surface along the crevice. The potential difference was measured by depth profile by Micro capillary tube which inserted in the crevice. The obtained results of this study showed that 1) As artificial crevice gap size became narrow, the current density was increased, whereas no crevice corrosion was found in the crevice gap size $3\times0.5\times16mm\;in\;1N\;H_2SO_4+0.1N\;NaCl\;solution\;at\;20^{\circ}C$ 2) potential of the crevice was about from -220 to -358mV which is lower than that of external surface potential of -200mV The results so far confirmes that the potential drop(so-called IR drop) in the crevice is one of the major mechanisms the process of crevice corrosion for 430 stainless steel.

Sensitive NDE of Small Fatigue Cracks

  • Saka, Masumi
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.1
    • /
    • pp.22-31
    • /
    • 2001
  • Some techniques developed recently for sizing smalt fatigue cracks are described. One is an ultrasonic technique which deals with a small closed crack, where both the stress closing the crack and the crack size are determined by analyzing inverse problem. Here, difficulties encountered in NDE of closed cracks by usual ultrasonic techniques are summarized in advance. Secondly, the closely coupled probes potential drop (CCPPD) technique, which is based on d-c potential drop measurement, is explained fur sizing small cracks. The CCPPD technique is not affected by crack closure. Finally, a discussion is given on NDE of materials degradation in conjunction with sensitive NDE of small cracks.

  • PDF

Development of the Advanced NDI Technique Using an Alternating Current : the Evaluation of surface crack and blind surface crack and the detection of defects in a field component (교류전류를 이용한 새로운 비파괴탐상법의 개발;표면결함과 이면결함의 평가 및 실기 부재의 결함 검출)

  • Kim. H.;Lim, J.K.
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.42-52
    • /
    • 1995
  • In the evaluation of aging degradation on the structural materials based on the fracture mechanics, the detection and size prediction of defect are very important. Aiming at nondestructive detection and size prediction ol defect with high accuracy and resolution, therefore, an lnduced Current Focusing Potential Drop(ICFPD) technique has been developed. The principle of this technique is to induce a focusing current at an exploratory region by an induction wire flowing an alternating current(AC) that is a constant ampere and frequency. Defects are assessed with the potential drops that are measured the induced current on the surface of metallic material by the potential pick-up pins. In this study, the lCFPD technique was applied for evaluating the location and size of the surface crack and blind crack made in plate specimens, and also for detecting the defects existing in valve, a field component, that were developed by SCC etc. during the service. The results of this present study show that surface crack and blind crack are able to defect with potential drop. these cracks are distinguished with the distribution of potential drop, and the crack depths can be estimated with each normalized potential drop that are parameters estimating the depth of each type crack. In the field component, the defects estimated by experiment result correspond with those in the cutting face of the measuring point within a higher sensitivity.

  • PDF

Experimental study of flow characteristics and sediment behaviors at the step down (단락부에서의 흐름 특성 및 역류에 의한 낙하리영역에서의 부류사 유동에 관한 연구)

  • 박기호
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.121-128
    • /
    • 1994
  • Reduced trend of surface velocity, length of the separated drop area and width of potential core have been verified through experimental study of flow characteristics at the step down. To inverstigate sediment behaviors, experimental study which involved accumulated sediment transport reducing water velocity in the separated drop area was performed. From the experimental results, surface velocity, length of the separated drop area and width of potential core were formulated, and calculated output was corroborated by experimental outcome. Furthermore an examination of the parameter which is defined by $q_{sf}$/$q_{uo}$ was performed by detecting sediment in the separated drop area. Therefore these experiments can express the phenomena of flow characteristics and sediment behaviors at the step down.

  • PDF

A Study on the Crevice Corrosion for Ferritic Stainless Steel by Micro Capillary Tube Method

  • Na Eun-Young;Ko Jae-Yong;Baik Shin-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.179-182
    • /
    • 2004
  • The aim of this study is to investigate the initiation and propagation of crevice corrosion for ferritic stainless steel in artificial crevice based on micro capillary tube method. The 430 stainless steel in artificial crevice is potentiostatically polarized in different sodium chloride solutions. Potentiodynamic and potentiostatic polarization data were measured in situ. The potentials in the crevice were measured by depth profile using the 0.04 mm diameter micro capillary tube inserted in the crevice. The potentials in the crevice ranged from -220 mV to -360 mV vs SCE from opening to bottom of crevice, which are lower than the external surface potential, -200 mV vs SCE. Such a potential drop induced the change of the metal surface state from passive to active. The surface of metal is located in passive state in -200 mV but the inner surface keeps active state below -220 mV, Thus these results show that the It drop mechanism in the crevice was more objective for evaluation and the method was easier to reproduce. Therefore the potential drop is one of the reasons for crevice corrosion by measuring the potentials in narrow crevice with a new micro measuring system.