• Title/Summary/Keyword: Potassium Hydroxide

Search Result 212, Processing Time 0.025 seconds

Preparation and Characterization of KOH-Activated Carbons Developed from Petroleum Coke

  • Sayed Ahmed, S.A.;Abo El-Enin, Reham M.M.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.10 no.4
    • /
    • pp.293-299
    • /
    • 2009
  • Potassium hydroxide activated carbons were prepared from Egyptian petroleum cokes with different KOH/coke ratios and at different activation temperatures and times. The textural properties were determined by adsorption of nitrogen at $-196^{\circ}C$. The adsorption of iodine and methylene blue was also investigated at $30^{\circ}C$. The surface area and the non-micropore volume increased whereas the micropore volume decreased with the increase of the ratio KOH/coke. Also the surface area and porosity increased with the rise of activation temperature from 500 to $800^{\circ}C$. Textural parameter considerably increased with the increase of activation time from 1 to 3 h. Further increasing of activation time from 3 to 4 h was associated with a less pronounced increase in textural parameters. The adsorption of iodine shows the same trend of surface area and porosity change exhibited by nitrogen adsorption, with KOH/coke ratio and temperature of activation. Adsorption of methylene blue follows pseudo-first-order kinetics and its equilibrium adsorption follows Langmuir and D-R models.

Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance

  • Lee, Dayoung;Jung, Jin-Young;Park, Mi-Seon;Lee, Young-Seak
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.192-197
    • /
    • 2014
  • A hierarchical pore structured novolac-type phenol based-activated carbon with micropores and mesopores was fabricated. Physical activation using a sacrificial silicon dioxide ($SiO_2$) template and chemical activation using potassium hydroxide (KOH) were employed to prepare these materials. The morphology of the well-developed pore structure was characterized using field-emission scanning electron microscopy. The novolac-type phenol-based activated carbon retained hierarchical pores (micropores and mesopores); it exhibited high Brunauer-Emmett-Teller specific surface areas and hierarchical pore size distributions. The hierarchical pore novolac-type phenol-based activated carbon was used as an electrode in electric double-layer capacitors, and the specific capacitance and the retained capacitance ratio were measured. The specific capacitances and the retained capacitance ratio were enhanced, depending on the $SiO_2$ concentration in the material. This result is attributed to the hierarchical pore structure of the novolac-type phenol-based activated carbon.

Removal of deltamethrin insecticide over highly porous activated carbon prepared from pistachio nutshells

  • Hassan, A.F.;Youssef, A.M.;Priecel, P.
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.234-242
    • /
    • 2013
  • Potassium hydroxide-activated carbons (CK21, CK11, and CK12) were prepared from pistachio nutshells. Physicochemical properties of activated carbons were characterized by TGA, $pH_{pzc}$, Fourier transform infrared spectroscopy, scanning electron microscopy, and $N_2$-adsorption at $-196^{\circ}C$. The examinations showed that activated carbons have high surface area ranging between 695-1218 $m^2/g$, total pore volume ranging between 0.527-0.772 mL/g, and a pore radius around 1.4 nm. The presence of acidic and basic surface C-O groups was confirmed. Batch adsorption experiments were carried out to study the effects of adsorbent dosage, temperature, initial concentration of adsorbate, and contact time on deltamethrin adsorption by activated carbons. The kinetic studies showed that the adsorption data followed a pseudo-second order kinetic model. The Langmuir model showed a maximum adsorption capacity of 162.6 mg/g at $35^{\circ}C$ on CK12. Thermodynamic studies indicated that adsorption was spontaneous and increased with temperature, suggesting an endothermic process.

Reaction of Furfural Derivatives. Cannizzaro reaction of Furfural, 5-Bromo-and 5-Methylfurfural (Cyclitol 유도체합성을 위한 Furfural 유도체의 반응에 관한 연구. Furfural, 5-Bromo-및 5-Methylfurfural의 Cannizzaro 반응)

  • Sohn Joo Hwan;Kim, Yong In;Nam Ki Dae
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.290-297
    • /
    • 1972
  • We have obtained the results of Cannizzaro reaction of furfural, 5-methylfurfural and 5-bromofurfural by using alcoholic potassium hydroxide solution in 95% (V/V) methanol solvent at $0{\sim}40^{\circ}C$. The results are as follows: 1) Their Cannizzaro reaction is fourth-order reaction, and the reaction of furfural proceeds 3 times as rapid as that of 5-methylfurfural and 10 times as slow as that of 5-bromofurfural. 2) Their activation energies of furfural, 5-methylfurfural and 5-bromofurfural in the reaction are 10.46Kcal/mole, 16.27Kcal/mole, and 9.62Kcal/mole respectively, and the calculated activation parameters, and ${\Delta}S^{\neq}$, increase in the order of 5-bromofurfural, furfural and 5-methyl-furfural.

  • PDF

Studies on the Constituents of Higher Fungi of Korea (XX)

  • Lee, Man-Hyong;Choi, Eung-Chil;Kim, Byong-Kak
    • Archives of Pharmacal Research
    • /
    • v.2 no.2
    • /
    • pp.133-144
    • /
    • 1979
  • To investigate constituents of Strobilomyces floccopus (Fr.) Karst. and Coprinus comatus (Fr.) S. F. Gray, free and total amino acids of the two mushrooms were quantitatively analyzed by G. L. C. and an amino acid analyzer. Free amino acids were extracted from both mushrooms with ethanol. Fourtenn free amino acids were detected from the ethanol extract of S. floccopus and fifteen free amino acids from C. comatus by G. L. C. And the dry carphopores of both mushrooms were hydrolyzed with hydrochloric acid and then the total protein amino acids were analyzed by A. A. A. Seventeen total amino acids were detected from each acid-hydrolysate of S. floccopus and C. comatus. Lipids were extracted from the carpophores of S. floccopus and saponified with alcoholic potassium hydroxide. The isolated sterols were subjected to G. L. C. and two sterols were detected. The isolated free fatty acids were methylated with diazomethane and subjected to column chromatography and G. L. C. Eleven saturated and nine unsaturated free fatty acids were detected from the carpophores of S. floccopus. The presence of these nutrient components shows that the two mushrooms can be utilized as edible ones.

  • PDF

Pore Structure Characterization of Poly(vinylidene chloride)-Derived Nanoporous Carbons

  • Jung, Hwan Jung;Kim, Yong-Jung;Lee, Dae Ho;Han, Jong Hun;Yang, Kap Seung;Yang, Cheol-Min
    • Carbon letters
    • /
    • v.13 no.4
    • /
    • pp.236-242
    • /
    • 2012
  • Poly(vinylidene chloride) (PVDC)-derived nanoporous carbons were prepared by various activation methods: heat-treatment under an inert atmosphere, steam activation, and potassium hydroxide (KOH) activation at 873, 1073, and 1273 K. The pore structures of PVDC-derived nanoporous carbons were characterized by the $N_2$ adsorption technique at 77 K. Heat treatment in an inert atmosphere increased the specific surface area and micropore volume with elevating temperature, while the average micropore width near 0.65 nm was not significantly changed, reflecting the characteristic pore structure of ultramicroporous carbon. Steam activation for PVDC at 873 and 1073 K also yielded ultramicroporosity. On the other hand, the steam activated sample at 1273 K had a wider average micropore width of 1.48 nm, correlating with a supermicropore. The KOH activation increased the micropore volume with elevating temperature, which is accompanied by enlargement of the average micropore width from 0.67 to 1.12 nm. The average pore widths of KOH-activated samples were strongly governed by the activation temperature. We expect that these approaches can be utilized to simply control the porosity of PVDC-derived nanoporous carbons.

EFFECT OF HEAT TREATMENT ON NUTRITIONAL VALUE OF WINGED BEAN (Psophocarpus tetragonolobus) AS COMPARED TO SOYBEAN I. CHEMICAL CHARACTERISTICS OF TREATED WINGED BEAN

  • Mutia, R.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.1
    • /
    • pp.19-26
    • /
    • 1993
  • The effect heat treatment (autoclave) on nutritional value of winged bean as compared to soybean has been investigated. The winged bean and soybean were obtained from local cultivar grown in Indonesia. The beans were autoclaved at $120^{\circ}C$ for 15, 30, 45, 60 or 90 minutes, respectively before being ground for chemical analysis. Trypsin inhibitors of winged bean and soybean decreased (p < 0.05) along with decreasing of urease activity as heating time increased from 0 to 90 minutes. Heat treatment significantly (p < 0.05) reduced protein solubility in 0.2% potassium hydroxide of winged bean as well as soybean. In vitro protein digestibility was significantly (p < 0.05) improved by heating treatment (15 to 60 min of autoclaving), however, excessive heating (90 min of autoclaving) decreased the digestibility of winged beans. Excessive heating had adverse effect on lysine, cystine and methionine contents of winged beans. The results of this study suggested that autoclaving at $120^{\circ}C$ within 45 minutes should be adequate to remove protease inhibitors and could improve protein digestibility of winged beans.

Effect of Oxidizer on the Polishing in Cadmium Telluride CMP (카드뮴 텔룰라이드 CMP 공정에서 산화제가 연마에 미치는 영향)

  • Shin, Byeong Cheol;Lee, Chang Suk;Jeong, Hae Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.69-74
    • /
    • 2015
  • Cadmium telluride (CdTe) is being developed for thin film of the X-Ray detector recently. But a rough surface of the CdTe should be improved for resolution and signal speed. This paper shows the study on the improvement of surface roughness and removal rate by applying Chemical Mechanical Polishing. The conventional potassium hydroxide (KOH) based colloidal silica slurry could not realize a mirror surface without physical defects, resulting in low material removal rate and many scratches on surface. In order to enhance chemical reaction such as form oxidized layer on the surface of cadmium telluride, we used hydrogen peroxide ($H_2O_2$) as an oxidizer. Consequently, in case of 3 wt% concentration of hydrogen peroxide, the highest MRR (938 nm/min) and the lowest surface roughness ($R_{p-v}=10.69nm$, $R_a=0.8nm$) could be obtained. EDS was also used to confirm the generated oxide of cadmium telluride surface.

Characterizing Animal-fats Biodiesel as Heating Fuel for Agricultural Hot Air Heater (농업용 온풍난방기에서 동물성바이오디젤의 연소특성)

  • Kim, Youngjung;Park, Seokho;Kim, Chungkil;Kim, Yeoungjin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.115-115
    • /
    • 2011
  • Biodiesel (BD) was made from animal-fats reacting with methanol and potassium hydroxide in the laboratory. The biodiesel made in the laboratory was sent to K-petro, the government agency, to inspect the quality of animal-fats biodiesel, of which generally the quality was acceptable for heating oil for agricultural hot air heater. Kinematic viscosity and calorific values of the biodiesels were measured. BD20(K), kerosene based biodiesel, showed 18cSt at $-20^{\circ}C$. It seems that BD100 can not be suitable for heating fuel under some temperature. As BD content increased calorific value decreased, up to 40,000J/g for 100% BD, while light oil calorific value was 45,567J/g, showing difference of 5,567J/g, about 12% difference. Several different fuels, BD20, BD50, BD100 and light oil, were prepared and tested for fuel combustion qualities for agricultural hot air heater and their combustion performances were compared and analyzed. Flame dimensions of biodiesels and light oil were almost same shape at the same combustion condition in the burner of the hot air heater. Generally $CO_2$ amounts of BDs are greater than light oil. But,the differences are so small that it is hard to tell there was significant difference existed between the BDs combustion and light oil.

  • PDF

Effect of surface modification of carbon felts on capacitive deionization for desalination

  • Lee, Jong-Ho;Ahn, Hong-Joo;Cho, Donghwan;Youn, Jeong-Il;Kim, Young-Jig;Oh, Han-Jun
    • Carbon letters
    • /
    • v.16 no.2
    • /
    • pp.93-100
    • /
    • 2015
  • Surface modified carbon felts were utilized as an electrode for the removal of inorganic ions from seawater. The surfaces of the carbon felts were chemically modified by alkaline and acidic solutions, respectively. The potassium hydroxide (KOH) modified carbon felt exhibited high Brunauer-Emmett-Teller (BET) surface areas and large pore volume, and oxygen-containing functional groups were increased during KOH chemical modification. However, the BET surface area significantly decreased by nitric acid ($HNO_3$) chemical modification due to severe chemical dissolution of the pore structure. The capability of electrosorption by an electrical double-layer and the efficiency of capacitive deionization (CDI) thus showed the greatest enhancement by chemical KOH modification due to the appropriate increase of carboxyl and hydroxyl functional groups and the enlargement of the specific surface area.