• Title/Summary/Keyword: Potassium Ferrocyanide

Search Result 19, Processing Time 0.024 seconds

A Cyclic Voltammetric Study of Electrodes for Reverse Electrodialysis

  • Lee, Seo-Yoon;Lee, Dong-Ju;Yeon, Kyeong-Ho;Kim, Woo-Gu;Kang, Moon-Sung;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.145-150
    • /
    • 2013
  • In this study, the electrochemical investigation of various electrodes for reverse electrodialysis using potassium ferrocyanide and potassium ferricyanide as a redox system was carried out. Cyclic voltammetry was the employed method for this electrochemical study. From the results of cyclic voltammograms for various electrode materials, i.e., Au, Vulcan supported Pt, activated carbon, carbon nanofiber, Vulcan, the Vulcan electrode showed the lowest overpotential, but the Pt electrode having slightly higher overpotential obtained slightly higher anodic and cathodic current densities for the $Fe(CN)_6{^{4-}}/Fe(CN)_6{^{3-}}$ redox couple. The cyclic voltammograms for the Vulcan electrode confirmed very good electrochemical reversibility and kinetic behavior. As a result, among the electrode materials, the Vulcan electrode is the most promising electrode material for reverse electrodialysis.

Electrochemical Behavior of the Reduction of Thin Films of $Ag_3Fe(CN)_6$

  • Moon Seongbae;Moon Jung Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1042-1045
    • /
    • 1994
  • A thin film of silver ferricyanide (Ag$_3$Fe(CN)$_6$) on a platinum or gold substrates can be reduced electrochemically to the salt of silver ferrocyanide in potassium nitrate solution. The color of these films are orange and these films are shown to be electrochromic. The voltammogram is shown the asymmetry of the oxidation compared to the reduction wave under various supporting electrolytes. The standard heterogeneous electron-transfer rate for these films and bare Pt electrode were 0.49 ${\times}$ l0$^{-2}$ and 1.30 ${\times}$ l0$^{-2}$ cm/s, respectively, obtained using a rotating disc electrode. Rough D$_0$ values, evaluated from the Levich equation, for Fe(CN)$_6^{3-/4-}$ at both SF thin film and a bare Pt disc electrode were shown as 1.2l ${\times}$ l0-6 and 0.94 ${\times}$ l0$^{-6}$ cm$^2$/s, respectively. The conductivities, as determined from the slops of the i-V curves for a ca. 1 mm sample for dried SF potassium rich and deficient bulk samples pressed between graphite electrodes, were 9.34 ${\times}$ l0$^{-9}$ and 5.80 ${\times}$ l0$^{-9}$ (${\Omega}$${\cdot}$cm)$^{-1}$, respectively.

Voltammetric Analysis on a Disposable Microfluidic Electrochemical Cell

  • Chand, Rohit;Han, Dawoon;Kim, Yong-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1175-1180
    • /
    • 2013
  • A microfabricated electrochemical cell comprising PDMS-based microchannel and in-channel gold microelectrodes was fabricated as a sensitive and a miniature alternative to the conventional electroanalytical systems. A reproducible fabrication procedure enabled patterning of multiple microelectrodes integrated within a PDMS-based fluidic network. The active area of each electrode was $200{\mu}m{\times}200{\mu}m$ with a gap of $200{\mu}m$ between the electrodes which resulted in a higher signal to noise ratio. Also, the PDMS layer served the purpose of shielding the electrical interferences to the measurements. Analytes such as potassium ferrocyanide; amino acid: cysteine and nucleoside: guanosine were characterized using the fabricated cell. The microchip was comparable to bulk electrochemical systems and its applicability was also demonstrated with flow injection based rapid amperometric detection of DNA samples. The device so developed shall find use as a disposable electrochemical cell for rapid and sensitive analysis of electroactive species in various industrial and research applications.

Ferroxyl Test를 이용한 박막의 치밀도 측정 방법

  • Yang, Ji-Hun;Jang, Seung-Hyeon;Park, Hye-Seon;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.147-147
    • /
    • 2010
  • Ferroxyl Test는 박막의 치밀도를 측정하는 대표적인 방법이다. 본 연구에서는 Ferroxyl Test를 이용하여 박막의 치밀도를 정량적으로 측정할 수 있는 방법을 제안한다. 알루미늄(aluminum; Al)은 뛰어난 내부식성 때문에 모재의 부식을 막을 수 있는 보호막으로 널리 사용되고 있다. Al 박막의 치밀도를 측정하기 위해서 스퍼터링(sputtering)으로 철(Fe) 기판위에 Al 타겟(99.99%)을 이용하여 박막을 코팅하였다. Ferroxyl Test 용액은 순수(deionized water)에 Potassium Ferrocyanide와 황산(또는 염화나타륨과 염화암모늄)을 첨가하여 제작하며, 용액에 거름종이를 적셔 Al이 코팅된 철 시편위에 올려놓고 반응시킨다. 일반적인 Ferroxyl test는 거름종이에 나타난 파란색(prussian blue) 반점의 숫자와 면적으로 치밀도를 측정한다. 하지만 이러한 방법은 측정 오차가 발생할 수 있다. 본 연구에서는 시편에 나타난 반응 반점의 면적을 광학 현미경이나 전자 현미경으로 이미지화하고, 이미지 프로세싱 프로그램을 이용하여 반응 면적을 수치화함으로써 측정오차를 줄이고 정확도를 높이고자 한다. 이러한 측정 방법을 이용하여 알루미늄 박막의 치밀도를 측정한 결과, 최고의 치밀도를 갖는 Al 박막이 Bulk 밀도의 94% 이상으로 측정되었다.

  • PDF

Studies on the Citric Acid Fermentation with Fungi (Part IV) Citric Acid Fermentation from Soluble Starch and Molasses (사상균에 의한 구연산발효에 관한 연구 (제IV보) 가용성전분 및 당밀에 의한 구연산발효)

  • 성낙계;김명찬;심기화;정덕화
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.3
    • /
    • pp.199-206
    • /
    • 1980
  • Some experiments on the citric acid production were carried out from soluble starch and molasses as raw materials. When soluble starch was used as substrate for the fermentation of citric acid by the strain M-80 which had assimilating ability of soluble starch in surface culture, the optimal culture media was 120g of soluble starch, 3.0g of (N $H_4$)$_2$S $O_4$, 2.0g of K $H_2$P $O_4$, 0.2g of MgS $O_4$.7$H_2O$, 1.5mg of F $e^{++}$, 1mg of Z $n^{++}$ and 20ml of methanol were added to 1 liter and optimal pH was 5.5. In about 8 days 61.8mg/ml of citric acid was produced. When treated molasses with potassium ferrocyanide was used as substrate for the fermentation of citric acid by the strain of M-315, the optimal condition in surface culture was 250g of molasses, 0.3g of N $H_4$N $O_3$, 0.05g of K $H_2$P $O_4$, 0.01g of MgS $O_4$.7$H_2O$, 0.5g of Potassium ferrocyanide and 30ml of methanol were added to 1.0 liter. On the other hand, the optimal condition in submersed culture was 250g of molasses, 0.3g of N $H_4$N $O_3$, 0.1g of K $H_2$P $O_4$, 0.01g of MgS $O_4$.7$H_2O$, 0.5g of potassium ferrocyanide, and 30m1 of methanol were added to 1.0 liter and optimal pH was all 5.0. After 9 days culture, 69.4mg/ ml, 39.6mg/ml of citric acid were separately produced in surface and submerged culture media.dia.

  • PDF

Development of a cholesterol biosensor modified with carbon nanotube (탄소나노튜브를 이용하여 개조한 콜레스테롤 바이오 센서 개발)

  • Kim, Haidong
    • Analytical Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.425-429
    • /
    • 2015
  • A cholesterol biosensor was developed using a modified carbon electrode with carbon nanotubes. The disposable cholesterol biosensor was modified with carbon nanotubes to enhance electron transfer during the enzymatic reaction of cholesterol. Cholesterol oxidase and peroxidase, with potassium ferrocyanide as a mediator, were immobilized on a screen-printed carbon nanotube electrode. The electrochemical cholesterol biosensor developed using carbon nanotubes showed a rapid and reliable signal for measuring total cholesterol. The cholesterol sensor showed a linear response in 5 seconds with a small volume (0.5 μL) in the range of 100~400 mg/dL, with a coefficient of variation of 4.0%.

The Removal Characteristics of Cs$^{+}$ and Co$^{++}$ from Aqueous Wastes by Ultrafiltration in Combination with Chemical Treatment Techniques(II) (화학처리와 한외여과막의 결합공정에 의한 Cs 및 Co의 제거특성 (II))

  • 이근우;정경환;김길청;김준형
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.56-64
    • /
    • 1996
  • The objective of this investigation is to establish the rejection characteristics of caesium and cobalt from radioactive liquid waste by chemical/ultrafiltration process. An extensive experimental investigation was conducted with inactive caesium and cobalt ions, utilizing ultrafiltration stirred cell. Caesium and cobalt could be effectively removed from waste solution using copper ferrocyanide and polyarcylic acid(PAA). The rejection dependence of the caesium was found to be a function of caesiun to potassium copper ferrocyanide feed molar ratio. The binding behavior of caesium on K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$, particles was explained in terms of a Langmuir adsorption isotherm. When Cs/K$_2$Cu$_3$(Fe(CN)$\sub$6/)$_2$molar ratio was 1.5, the removal of caesium was the most efficient. The rejection efficiency of cobalt is dependent upon various parameters such as pH, cobalt concentration and PAA concentration. The rejection behavior of cobalt was explained in term of a equilibrium model taking into account the reaction between the ligand group, the proton and the cobalt ion. At the conditions of PAA/Co ratio of 2 and pH of 5.6, the removal of cobalt was over 90%. Also, the effect of chemical addition sequence for the simultaneously removal of caesiun and cobalt was discussed.

  • PDF

High-temperature Thermal Decomposition of Cs-adsorbed CHA-Cs and CHA-PCFC-Cs Zeolite System, and Sr-adsorbed 4A-Sr and BaA-Sr Zeolite System (Cs-흡착 CHA-Cs 및 CHA-PCFC-Cs 제올라이트계와 Sr-흡착 4A-Sr 및 BaA-Sr 제올라이트계의 고온 열분해)

  • Lee, Eil-Hee;Kim, Ji-Min;Kim, Hyung-Ju;Kim, Ik-Soo;Chung, Dong-Yong;Kim, Kwang-Wook;Lee, Keun-Young;Seo, Bum-Kyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.49-58
    • /
    • 2018
  • For the immobilization of high-radioactive nuclides such as Cs and Sr by high-temperature thermal decomposition, this study was carried out to investigate the phase transformation with calcined temperature by using TGA (thermogravimetric analysis) and XRD (X-ray diffraction) in the Cs-adsorbed CHA (chabazite zeolite of K type)-Cs and CHA-PCFC (potassium cobalt ferrocyanide)-Cs zeolite system, and Sr-adsorbed 4A-Sr and BaA-Sr zeolite system, respectively. In the case of CHA-Cs zeolite system, the structure of CHA-Cs remained at up to $900^{\circ}C$ and recrystallized to pollucite ($CsAlSi_2O_6$) at $1,100^{\circ}C$ after undergoing amorphous phase at $1,000^{\circ}C$. However, the CHA-CFC-Cs zeolite system retained the CHA-PCFC-Cs structure up to $700^{\circ}C$, but its structure collapsed in $900{\sim}1,000^{\circ}C$, and then transformed to amorphous phase, and recrystallized to pollucite at $1,100^{\circ}C$. In the case of 4A-Sr zeolite system, on the other hand, the structure of 4A-Sr maintained up to $700^{\circ}C$ and its phase transformed to amorphous at $800^{\circ}C$, and recrystallized to Sr-feldspar ($SrAl_2Si_2O_8$, hexagonal) at $900^{\circ}C$ and to $SrAl_2Si_2O_8$ (triclinic) at $1,100^{\circ}C$. However, the BaA-Sr zeolite system structure began to break down at below $500^{\circ}C$, and then transformed to amorphous phase in $500{\sim}900^{\circ}C$ and recrystallized to Ba/Sr-feldspar (coexistence of $Ba_{0.9}Sr_{0.1}Al_2Si_2O_8$ and $Ba_{0.5}Sr_{0.5}Al_2Si_2O_8$) at $1,100^{\circ}C$. All of the above zeolite systems recrystallized to mineral phase through the dehydration/(decomposition) ${\rightarrow}$ amorphous ${\rightarrow}$ recrystallization with increasing temperature. Although further study of the volatility and leachability of Cs and Sr in the high-temperature thermal decomposition process is required, Cs and Sr adsorbed in each zeolite system are mineralized as pollucite, Sr-feldspar and Ba/Sr-feldspar. Therefore, Cs and Sr seen to be able to completely immobilize in the calcining wasteform/(solidified wasteform).

The Effect of Nitric Oxide Donor or Nitric Oxide Synthase Inhibitor on Oxidant Injury to Cultured Rat Lung Microvascular Endothelial Cells (산화질소 공여물과 산화질소 합성효소 길항제가 백서 폐미세혈관 내피세포 산화제 손상에 미치는 영향)

  • Chang, Joon;Michael, John R.;Kim, Se-Kyu;Kim, Sung-Kyu;Lee, Won-Young;Kang, Kyung-Ho;Yoo, Se-Hwa;Chae, Yang-Seok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1265-1276
    • /
    • 1998
  • Background : Nitric oxide(NO) is an endogenously produced free radical that plays an important role in regulating vascular tone, inhibition of platelet aggregation and white blood cell adhesion to endothelial cells, and host defense against infection. The highly reactive nature of NO with oxygen radicals suggests that it may either promote or reduce oxidant-induced cell injury in several biological pathways. Oxidant injury and interactions between pulmonary vascular endothelium and leukocytes are important in the pathogenesis of acute lung injury, including acute respiratory distress syndrome(ARDS). In ARDS, therapeutic administration of NO is a clinical condition providing exogenous NO in oxidant-induced endothelial injury. The role of exogenous NO from NO donor or the suppression of endogenous NO production was evaluated in oxidant-induced endothelial injury. Method : The oxidant injury in cultured rat lung microvascular endothelial cells(RLMVC) was induced by hydrogen peroxide generated from glucose oxidase(GO). Cell injury was evaluated by $^{51}$chromium($^{51}Cr$) release technique. NO donor, such as S-nitroso-N-acetylpenicillamine(SNAP) or sodium nitroprusside(SNP), was added to the endothelial cells as a source of exogenous NO. Endogenous production of NO was suppressed with N-monomethyl-L-arginine(L-NMMA) which is an NO synthase inhibitor. L-NMMA was also used in increased endogenous NO production induced by combined stimulation with interferon-$\gamma$(INF-$\gamma$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), and lipopolysaccharide(LPS). NO generation from NO donor or from the endothelial cells was evaluated by measuring nitrite concentration. Result : $^{51}Cr$ release was $8.7{\pm}0.5%$ in GO 5 mU/ml, $14.4{\pm}2.9%$ in GO 10 mU/ml, $32.3{\pm}2.9%$ in GO 15 mU/ml, $55.5{\pm}0.3%$ in GO 20 mU/ml and $67.8{\pm}0.9%$ in GO 30 mU/ml ; it was significantly increased in GO 15 mU/ml or higher concentrations when compared with $9.6{\pm}0.7%$ in control(p < 0.05; n=6). L-NMMA(0.5 mM) did not affect the $^{51}Cr$ release by GO. Nitrite concentration was increased to $3.9{\pm}0.3\;{\mu}M$ in culture media of RLMVC treated with INF-$\gamma$ (500 U/ml), TNF-$\alpha$(150 U/ml) and LPS($1\;{\mu}g/ml$) for 24 hours ; it was significantly suppressed by the addition of L-NMMA. The presence of L-NMMA did not affect $^{51}Cr$ release induced by GO in RLMVC pretreated with INF-$\gamma$, TNF-$\alpha$ and LPS. The increase of $^{51}Cr$ release with GO(20 mU/ml) was prevented completely by adding 100 ${\mu}M$ SNAP. But the add of SNP, potassium ferrocyanate or potassium ferricyanate did not protect the oxidant injury. Nitrite accumulation was $23{\pm}1.0\;{\mu}M$ from 100 ${\mu}M$ SNAP at 4 hours in phenol red free Hanks' balanced salt solution. But nitrite was not detectable from SNP upto 1 mM The presence of SNAP did not affect the time dependent generation of hydrogen peroxide by GO in phenol red free Hanks' balanced salt solution. Conclusion : Hydrogen peroxide generated by GO causes oxidant injury in RLMVC. Exogenous NO from NO donor prevents oxidant injury, and the protective effect may be related to the ability to release NO. These results suggest that the exogenous NO may be protective on oxidant injury to the endothelium.

  • PDF