DOI QR코드

DOI QR Code

Voltammetric Analysis on a Disposable Microfluidic Electrochemical Cell

  • Chand, Rohit (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Han, Dawoon (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Yong-Sang (School of Electronic and Electrical Engineering, Sungkyunkwan University)
  • Received : 2012.12.14
  • Accepted : 2013.01.25
  • Published : 2013.04.20

Abstract

A microfabricated electrochemical cell comprising PDMS-based microchannel and in-channel gold microelectrodes was fabricated as a sensitive and a miniature alternative to the conventional electroanalytical systems. A reproducible fabrication procedure enabled patterning of multiple microelectrodes integrated within a PDMS-based fluidic network. The active area of each electrode was $200{\mu}m{\times}200{\mu}m$ with a gap of $200{\mu}m$ between the electrodes which resulted in a higher signal to noise ratio. Also, the PDMS layer served the purpose of shielding the electrical interferences to the measurements. Analytes such as potassium ferrocyanide; amino acid: cysteine and nucleoside: guanosine were characterized using the fabricated cell. The microchip was comparable to bulk electrochemical systems and its applicability was also demonstrated with flow injection based rapid amperometric detection of DNA samples. The device so developed shall find use as a disposable electrochemical cell for rapid and sensitive analysis of electroactive species in various industrial and research applications.

Keywords

References

  1. Wu, J.; Zou, Y.; Li, X.; Liu, H.; Shen, G.; Yu, R. Sens. Actuators, B 2005, 104, 43. https://doi.org/10.1016/j.snb.2004.04.097
  2. Salimi, A.; Noorbakhash, A.; Karonian, F. S. Int. J. Electrochem. Sci. 2006, 1, 435.
  3. Hu, K.; Lan, D.; Li, X.; Zhang, S. Anal. Chem. 2008, 80, 9124. https://doi.org/10.1021/ac8017197
  4. Dolnik, V.; Liu, S.; Jovanovich, S. Electrophoresis 2000, 21, 41. https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<41::AID-ELPS41>3.0.CO;2-7
  5. Inagaki, S.; Esaka, Y.; Sako, M.; Goto, M. Electrophoresis 2001,22, 3408. https://doi.org/10.1002/1522-2683(200109)22:16<3408::AID-ELPS3408>3.0.CO;2-A
  6. Wu, C. C.; Wu, R. G.; Huang, J. G.; Lin, Y. C.; Hsien-Chang, C. Anal. Chem. 2003, 75, 947. https://doi.org/10.1021/ac025912t
  7. Jang, Y. C.; Jha, S. K.; Chand, R.; Islam, K.; Kim, Y. S. Electrophoresis 2011, 32, 913. https://doi.org/10.1002/elps.201000697
  8. Chand, R.; Kumar Jha, S.; Islam, K.; Han, D.; Shin, I. S.; Kim, Y. S. Biosens. Bioelectron. 2013, 40, 362. https://doi.org/10.1016/j.bios.2012.08.009
  9. Radi, A.-E.; Munoz-Berbel, X.; Cortina-Puig, M.; Marty, J.-L. Electrochim. Acta 2003, 54, 2180.
  10. Skjolding, L.; Spegel, C.; Ribayrol, A.; Emneus, J.; Montelius, L. J. Phys. Conf. Ser. 2008, 100, 52045. https://doi.org/10.1088/1742-6596/100/5/052045
  11. Hu, X.; He, Q.; Lu, H.; Chen, H. J. Electroanal. Chem. 2010, 638,21. https://doi.org/10.1016/j.jelechem.2009.10.026
  12. Burns, M. A.; Johnson, B. N.; Brahmasandra, S. N.; Handique, K.; Webster, J. R.; Krishnan, M.; Sammarco, T. S.; Man, P. M.; Jones, D.; Heldsinger, D.; Mastrangelo, C. H.; Burke, D. T. Science1998, 282, 484. https://doi.org/10.1126/science.282.5388.484
  13. Joung, S.-R.; Kang, C. J.; Kim, Y.-S. Jpn. J. Appl. Phys. 2008, 47,1342. https://doi.org/10.1143/JJAP.47.1342
  14. Jha, S. K.; Ra, G.-S.; Joo, G.-S.; Kim, Y.-S. Curr. Appl. Phys.2009, 9, e301. https://doi.org/10.1016/j.cap.2009.06.035
  15. Roy, S.; Gao, Z. Nano Today 2009, 4, 318. https://doi.org/10.1016/j.nantod.2009.06.003
  16. Dayton, M. A.; Brown, J. C.; Stutts, K. J.; Wightman, R. M. Anal. Chem. 1980, 52, 946. https://doi.org/10.1021/ac50056a040
  17. Wightman, R. M. Science 1988, 240, 415. https://doi.org/10.1126/science.240.4851.415
  18. Lee, S.-K.; Yoon, Y.-H.; Kang, H. Electrochem. Commun. 2009, 11, 676. https://doi.org/10.1016/j.elecom.2009.01.003
  19. Brown, R. J. C.; Brett, D. J. L. Microchim. Acta 2008, 164, 337.
  20. Casella, I. G.; Contursi, M.; Desimoni, E. Analyst 2002, 127, 647. https://doi.org/10.1039/b111080m
  21. Yosypchuk, B.; Novotny, L. Talanta 2002, 56, 971. https://doi.org/10.1016/S0039-9140(01)00657-9
  22. Rusin, O.; St Luce, N. N.; Agbaria, R. A.; Escobedo, J. O.; Jiang, S.; Warner, I. M.; Dawan, F. B.; Lian, K.; Strongin, R. M. J. Am. Chem. Soc. 2004, 126, 4. https://doi.org/10.1021/ja037954k

Cited by

  1. Real-time quantitative monitoring of in vitro nasal drug delivery by a nasal epithelial mucosa-on-a-chip model vol.18, pp.6, 2013, https://doi.org/10.1080/17425247.2021.1873274