• Title/Summary/Keyword: Post-processing Rendering

Search Result 20, Processing Time 0.023 seconds

Smoke Rendering Method in Post-processing for Safety-Training Contents (안전 훈련 콘텐츠에 적합한 포스트 프로세싱 단계에서의 연기 렌더링 방법)

  • Park, Sanghyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1644-1652
    • /
    • 2022
  • In the case of safety training where practical training is impossible due to risk problems, training contents using realistic media such as virtual reality or augmented reality are becoming a new alternative. In this paper, we propose a smoke modeling method that can be applied to safety-training contents implemented with realistic media technology. When an accident occurs in a hazardous area such as a petrochemical plant, visibility is not secured due to gas leakage and fire. In order to create such a situation, it is important to realistically express smoke. The proposed method is a smoke model implementation technique that can be effectively applied to the background of complex passages and devices such as petrochemical plants. In the proposed method, the smoke is expressed using volumetric rendering in the post-processing stage for the resulting image of scene rendering. Implementation results in the background of the factory show that the proposed method produces models that can express the smoke realistically.

Volume Haptic Rendering Algorithm for Realistic Modeling (실감형 모델링을 위한 볼륨 햅틱 렌더링 알고리즘)

  • Jung, Ji-Chan;Park, Joon-Young
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.2
    • /
    • pp.136-143
    • /
    • 2010
  • Realistic Modeling is to maximize the reality of the environment in which perception is made by virtual environment or remote control using two or more senses of human. Especially, the field of haptic rendering, which provides reality through interaction of visual and tactual sense in realistic model, has brought attention. Haptic rendering calculates the force caused by model deformation during interaction with a virtual model and returns it to the user. Deformable model in the haptic rendering has more complexity than a rigid body because the deformation is calculated inside as well as the outside the model. For this model, Gibson suggested the 3D ChainMail algorithm using volumetric data. However, in case of the deformable model with non-homogeneous materials, there were some discordances between visual and tactual sense information when calculating the force-feedback in real time. Therefore, we propose an algorithm for the Volume Haptic Rendering of non-homogeneous deformable object that reflects the force-feedback consistently in real time, depending on visual information (the amount of deformation), without any post-processing.

Study on a post-processing program for flow analysis based on the object-oriented programming concept (객체재향 개념을 반영한 유동해석 후처리 프로그램에 대한 연구)

  • Na J. S.;Kim K. Y.;Kim B. S.
    • Journal of computational fluids engineering
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2004
  • In the present study, a post-processing program is developed for 3D data visualization and analysis. Because the graphical user interface(GUI) of the program is based on Qt-library while all the graphic rendering is performed with OpenGL library, the program runs on not only MS Windows but also UNU and Linux systems without modifying source code. The structure of the program is designed according to the object-oriented programming(OOP) concept so that it has extensibility, reusability, and easiness compared to those by procedural programming. The program is organized as modules by classes, and these classes are made to function through inheritance and cooperation which is an important and valuable concept of object-oriented programming. The major functions realized so far which include mesh plot, contour plot, vector plot, streamline plot, and boundary plot are demonstrated and the relevant algorithms are described.

Cartoon Character Rendering based on Shading Capture of Concept Drawing (원화의 음영 캡쳐 기반 카툰 캐릭터 렌더링)

  • Byun, Hae-Won;Jung, Hye-Moon
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.8
    • /
    • pp.1082-1093
    • /
    • 2011
  • Traditional rendering of cartoon character cannot revive the feeling of concept drawings properly. In this paper, we propose capture technology to get toon shading model from the concept drawings and with this technique, we provide a new novel system to render 3D cartoon character. Benefits of this system is to cartoonize the 3D character according to saliency to emphasize the form of 3D character and further support the sketch-based user interface for artists to edit shading by post-production. For this, we generate texture automatically by RGB color sorting algorithm to analyze color distribution and rates of selected region. In the cartoon rendering process, we use saliency as a measure to determine visual importance of each area of 3d mesh and we provide a novel cartoon rendering algorithm based on the saliency of 3D mesh. For the fine adjustments of shading style, we propose a user interface that allow the artists to freely add and delete shading to a 3D model. Finally, this paper shows the usefulness of the proposed system through user evaluation.

Pre-construction Simulation of Precast Bridge Piers and Quality Management using Augmented Reality (증강현실 기반의 프리캐스트 교각의 사전시공 시뮬레이션 및 시공성 정밀도 관리방안)

  • Park, Seong-Jun;Dang, Ngoc-Son;Yoon, Do-Sun;Lon, Sokanya;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.8 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • Geometry control of precast members is the most important technology for modular construction. In this paper, image-based modeling and rendering (IBMR) technology was adopted for 3D modeling of precast elements. It is necessary to use match-casting method for precast post-tensioned column assembly. Preassembly using 3D models created by image processing can minimize construction error. Augmented reality devices are used to check the geometry of the segment. Laboratory-scale tests were performed. The proposed process has been applied to the real precast bridge pier segments.

Three Dimensional Medical Image Rendering Using Laplace's Equation (라플라스 방정식의 해를 이용한 삼차원 의학 영상 랜더링)

  • Kim, S.M.;Ahn, C.B.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2918-2920
    • /
    • 2000
  • A new multi-planar interpolation technique for three dimensional medical image rendering is proposed. In medical imaging. resolution in the slice direction is usually much lower than those in the transverse planes. The proposed method is based on the solution of the Laplace's equation used in the electrostatics. In this approach. two contours in the source and destination planes for a given object is assumed to have equi-potentials. Some preprocessing and post-processing including scaling. displacement. rotation from the centers of mass are involved in the algorithm. The interpolation solution assumes mostly smoothing changes in between the source and destination planes. Simultaneous multiple interpolation planes are inherently obtained in the proposed method. Some experimental and simulation results are shown.

  • PDF

Augmented Visualization of Modeling & Simulation Analysis Results (모델링 & 시뮬레이션 해석 결과 증강가시화)

  • Kim, Minseok;Seo, Dong Woo;Lee, Jae Yeol;Kim, Jae Sung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.202-214
    • /
    • 2017
  • The augmented visualization of analysis results can play an import role as a post-processing tool for the modeling & simulation (M&S) technology. In particular, it is essential to develop such an M&S tool which can run on various multi-devices. This paper presents an augmented reality (AR) approach to visualizing and interacting with M&S post-processing results through mobile devices. The proposed approach imports M&S data, extracts analysis information, and converts the extracted information into the one used for AR-based visualization. Finally, the result can be displayed on the mobile device through an AR marker tracking and a shader-based realistic rendering. In particular, the proposed method can superimpose AR-based realistic scenes onto physical objects such as 3D printing-based physical prototypes in a seamless manner, which can provide more immersive visualization and natural interaction of M&S results than conventional VR or AR-based approaches. A user study has been performed to analyze the qualitative usability. Implementation results will also be given to show the advantage and effectiveness of the proposed approach.

A Simple and Fast Algorithm for Real-time Pencil Strokes (간단하고 빠른 실시간 연필 스트로크 알고리즘)

  • Choi Sung-Wook
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.6
    • /
    • pp.344-353
    • /
    • 2006
  • In this paper, we present a new algorithm which imitate real pencil strokes. The purpose of research on NPR(Non-Photorealistic Rendering) is simulating automatically manmade artistic expressions such as pen-and-ink illustrations, watercolor paintings, pencil sketches and pastel drawings with computers. Recently, there has been a great deal of research works on NPR. One of them is researching in pencil illustration methods for NPR, and a lot of researchers have investigated into the LIC(Linear Integral Convolution) techniques which would change the initial images into the output images by directional vector field images for generating effects of pencil. However, the LIC techniques can not be applied to real-time drawing tools because they are post processing techniques. This paper presents a real-time pencil strokes algorithm which is based on an observation of how pencils(from 6B to 6H) draw lines. Although this algorithm using some pencil variables and noise generation is simple, it is fast and also can draw real-time pencil strokes similar to real manmade pencil strokes in a GUI drawing tool.

Study of threshold and opacity in three-dimensional CT volume rendering of oral and maxillofacial area (구강악안면영역의 3차원 CT 영상 재형성시 역치 및 불투명도에 대한 연구)

  • Choi, Mun-Kyung;Lee, Sam-Sun;Huh, Kyung-Hoe;Yi, Won-Jin;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.39 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • Purpose: This study was designed to determine a proper threshold value and opacity in three-dimensional CT volume rendering of oral and maxillofacial area. Materials and Methods: Three-dimensional CT data obtained from 50 persons who were done orthognatic surgery in department of oral and maxillofacial radiology of Seoul National University retrospectively. 12 volume rendering post-processing protocols of combination of threshold(100HU, 150HU, 221HU, 270HU) and opacity (58%, 80%, 90%) were applied. Five observers independently evaluated image quality using a five-point range scale. The results were analyzed by receiver operating characteristic curves, ANOVA and Kappa value. And three oromaxillofacial surgeons chose the all images that they thought proper clinically in the all of images. Results: Analysis using ROC curves revealed the area under each curve which indicated a diagnostic accuracy. The highest diagnostic accuracy appear with 100HU and 58% opacity. and the lowest diagnostic accuracy appear with 221HU and 58% opacity that are being used protocol in department of oral and maxillofacial radiology of Seoul National University. But, no statistically significant difference was noted between any of the protocols. And the number of proper images clinically that chosen by three oromaxillofacial surgeons is the largest in the cases of protocol 8 (221HU, opacity 80%) and protocol 11 (270HU, opacity 80%) in one after the other. Conclusion: Threshold and opacity in volume rendering can be controled easily and these can be causes of making an diagnostic accuracy. So we need to select proper values of these factors.

  • PDF

Preoperative CT Navigation of Perigastric Vessel Anatomy for Gastrectomy

  • Baek, Song-Ee;Hyung, Woo Jin;Lim, Joon Seok
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.41-44
    • /
    • 2014
  • The aim of this report is showing the case that we could give exact navigation of perigastric vessels for gastrectomy with 3D CTA. A 74-year-old male patient visited hospital with gastric cancer. Early gastric cancer, type IIb was found at stomach antrum great curvature side. Before surgery, he underwent 3D CT angiography. 3D volume rendering images and MIP images were made by post processing. He had replaced Lt. hepatic artery arising from Lt. gastric artery. Surgeon could get patient's specific vascular anatomy before surgery including surgically relevant anatomical distance and direction and could finish gastrectomy within 4 hours and just 53ml blood loss.