• Title/Summary/Keyword: Post-processing

Search Result 1,761, Processing Time 0.025 seconds

Assessment of Mild Cognitive Impairment in Elderly Subjects Using a Fully Automated Brain Segmentation Software

  • Kwon, Chiheon;Kang, Koung Mi;Byun, Min Soo;Yi, Dahyun;Song, Huijin;Lee, Ji Ye;Hwang, Inpyeong;Yoo, Roh-Eul;Yun, Tae Jin;Choi, Seung Hong;Kim, Ji-hoon;Sohn, Chul-Ho;Lee, Dong Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.3
    • /
    • pp.164-171
    • /
    • 2021
  • Purpose: Mild cognitive impairment (MCI) is a prodromal stage of Alzheimer's disease (AD). Brain atrophy in this disease spectrum begins in the medial temporal lobe structure, which can be recognized by magnetic resonance imaging. To overcome the unsatisfactory inter-observer reliability of visual evaluation, quantitative brain volumetry has been developed and widely investigated for the diagnosis of MCI and AD. The aim of this study was to assess the prediction accuracy of quantitative brain volumetry using a fully automated segmentation software package, NeuroQuant®, for the diagnosis of MCI. Materials and Methods: A total of 418 subjects from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer's Disease cohort were included in our study. Each participant was allocated to either a cognitively normal old group (n = 285) or an MCI group (n = 133). Brain volumetric data were obtained from T1-weighted images using the NeuroQuant software package. Logistic regression and receiver operating characteristic (ROC) curve analyses were performed to investigate relevant brain regions and their prediction accuracies. Results: Multivariate logistic regression analysis revealed that normative percentiles of the hippocampus (P < 0.001), amygdala (P = 0.003), frontal lobe (P = 0.049), medial parietal lobe (P = 0.023), and third ventricle (P = 0.012) were independent predictive factors for MCI. In ROC analysis, normative percentiles of the hippocampus and amygdala showed fair accuracies in the diagnosis of MCI (area under the curve: 0.739 and 0.727, respectively). Conclusion: Normative percentiles of the hippocampus and amygdala provided by the fully automated segmentation software could be used for screening MCI with a reasonable post-processing time. This information might help us interpret structural MRI in patients with cognitive impairment.

Effects of Jinyeosoo Clean Mist on the Improvement of Facial Skin in Middle-aged Women (진여클린미스트를 이용한 중년여성의 안면피부개선 효과)

  • Kim, Min Joo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.220-228
    • /
    • 2021
  • In this study, 20 middle-aged women aged from 35 to 55 were studied from October 12, 2020 to November 15, 2020 to find out the effects of improvement of facial skin of Jinyeosoo Clean Mist. Among the 20 participants, 10 were divided into experimental group and 10 control group. The Janus facial skin scope system (PSI Co.) used on the skin to measure pore, wrinkles, elasticity, UV pigmentation, and skin tone observed depending the difference in light sources. The facial examination took place 10 minutes after cleansing to stabilize and a total of 4 examinations were carried out after every week of using Jinyeosoo Clean Mist for 4 weeks. For statistical processing, SPSS statistics program 21.0 was utilized to compare the mean averages of pre-experimental and post-experimental data from the above two groups - the experimental group that used Jinyeosoo Clean Mist (hydrogen ion mist) 1 and 2 and the control group that did not use the subject products - and the corresponding sample t-test was used. As a result of the analysis, the group that used Jinyeosoo Clean Mist showed difference in pores (t=3.280, p<.05), wrinkles (t=4.353, p<.01) and elasticity (t=3.003, p<.05), skin tone(t=3.280, p<.01) under the statistical significance level.

Construction of Open-source Program Platform for Efficient Numerical Analysis and Its Case Study (효율적 수치해석을 위한 오픈소스 프로그램 기반 해석 플랫폼 구축 및 사례 연구)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.509-518
    • /
    • 2020
  • This study constructed a new simulation platform, including mesh generation process, numerical simulation, and post-processing for results analysis based on exploration data to perform real-scale numerical analysis considering the actual geological structure efficiently. To build the simulation platform, we applied for open-source programs. The source code is open to be available for code modification according to the researcher's needs and compatibility with various numerical simulation programs. First, a three-dimensional model(3D) is acquired based on the exploration data obtained using a drone. Then, the domain's mesh density was adjusted to an interpretable level using Blender, the free and open-source 3D creation suite. The next step is to create a 3D numerical model by creating a tetrahedral volume mesh inside the domain using Gmsh, a finite element mesh generation program. To use the mesh information obtained through Gmsh in a numerical simulation program, a converting process to conform to the program's mesh creation protocol is required. We applied a Python code for the procedure. After we completed the stability analysis, we have created various visualization of the study using ParaView, another open-source visualization and data analysis program. We successfully performed a preliminary stability analysis on the full-scale Dokdo model based on drone-acquired data to confirm the usefulness of the proposed platform. The proposed simulation platform in this study can be of various analysis processes in future research.

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

Performance Evaluation of KOMPSAT-3 Satellite DSM in Overseas Testbed Area (해외 테스트베드 지역 아리랑 위성 3호 DSM 성능평가)

  • Oh, Kwan-Young;Hwang, Jeong-In;Yoo, Woo-Sun;Lee, Kwang-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1615-1627
    • /
    • 2020
  • The purpose of this study is to compare and analyze the performance of KOMPSAT-3 Digital Surface Model (DSM) made in overseas testbed area. To that end, we collected the KOMPSAT-3 in-track stereo image taken in San Francisco, the U.S. The stereo geometry elements (B/H, converse angle, etc.) of the stereo image taken were all found to be in the stable range. By applying precise sensor modeling using Ground Control Point (GCP) and DSM automatic generation technique, DSM with 1 m resolution was produced. Reference materials for evaluation and calibration are ground points with accuracy within 0.01 m from Compass Data Inc., 1 m resolution Elevation 1-DSM produced by Airbus. The precision sensor modeling accuracy of KOMPSAT-3 was within 0.5 m (RMSE) in horizontal and vertical directions. When the difference map was written between the generated DSM and the reference DSM, the mean and standard deviation were 0.61 m and 5.25 m respectively, but in some areas, they showed a large difference of more than 100 m. These areas appeared mainly in closed areas where high-rise buildings were concentrated. If KOMPSAT-3 tri-stereo images are used and various post-processing techniques are developed, it will be possible to produce DSM with more improved quality.

Growth Characteristics and Yields According to EC Concentrations and Substrates in Paprika (파프리카 수경재배 시 EC 농도와 배지에 따른 생육 및 수량 특성)

  • Hong, Youngsin;Lee, Jaesu;Baek, Jeonghyun;Lee, Sanggyu;Chung, Sunok
    • Journal of Environmental Science International
    • /
    • v.30 no.8
    • /
    • pp.605-612
    • /
    • 2021
  • Supply electrical conductivity (EC) concentration of the nutrition solution is an important factor in the absorption of nutrients by plants and the management of the root zone, as it can control the vegetative/reproductive growth of a plant. Paprika usually undergoes its reproductive and vegetative growth simultaneously. Therefore, ensuring proper growth of the plant leads to increased yield of paprika. In this study, growth characteristics of paprika were examined according to the EC concentration of a coir and a rockwool substrate. The supply EC was 1.0, 2.0, and 4.0 mS·cm-1 applied at the initial stages of the growth using the rockwool (commonly used by paprika farmers) and the coir substrate with a chip and dust ratio of 50:50 and 70:30. For up to 16 weeks of paprika growth, EC concentrations of 1.0 and 2.0 mS·cm-1 were found to have a greater effect on the growth than EC at 4.0 mS·cm-1. The normality (marketable) rate of fruit, the soluble solid content, and paprika growth showed that the coir was generally better than the rockwool regardless of the supply EC concentration. The values of the yield per plant at an EC concentration of 4.0 mS·cm-1 was mostly similar at 1.6 kg (coir 50:50), 1.5 kg (coir 70:30) and 1.5 kg (rockwool), but the yield of the rockwool was 88%, which was lower than 98% and 94% yield of the coir substrate. Therefore, this concludes that coir substrate is more effective than rockwool at improving paprika productivity. The results also suggest that the use of coir substrate for paprika has many benefits in terms of reducing production costs and preventing environmental destruction during post-processing.

A Statistical Correction of Point Time Series Data of the NCAM-LAMP Medium-range Prediction System Using Support Vector Machine (서포트 벡터 머신을 이용한 NCAM-LAMP 고해상도 중기예측시스템 지점 시계열 자료의 통계적 보정)

  • Kwon, Su-Young;Lee, Seung-Jae;Kim, Man-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • Recently, an R-based point time series data validation system has been established for the statistical post processing and improvement of the National Center for AgroMeteorology-Land Atmosphere Modeling Package (NCAM-LAMP) medium-range prediction data. The time series verification system was used to compare the NCAM-LAMP with the AWS observations and GDAPS medium-range prediction model data operated by Korea Meteorological Administration. For this comparison, the model latitude and longitude data closest to the observation station were extracted and a total of nine points were selected. For each point, the characteristics of the model prediction error were obtained by comparing the daily average of the previous prediction data of air temperature, wind speed, and hourly precipitation, and then we tried to improve the next prediction data using Support Vector Machine( SVM) method. For three months from August to October 2017, the SVM method was used to calibrate the predicted time series data for each run. It was found that The SVM-based correction was promising and encouraging for wind speed and precipitation variables than for temperature variable. The correction effect was small in August but considerably increased in September and October. These results indicate that the SVM method can contribute to mitigate the gradual degradation of medium-range predictability as the model boundary data flows into the model interior.

Automatic Generation of Bibliographic Metadata with Reference Information for Academic Journals (학술논문 내에서 참고문헌 정보가 포함된 서지 메타데이터 자동 생성 연구)

  • Jeong, Seonki;Shin, Hyeonho;Ji, Seon-Yeong;Choi, Sungphil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.56 no.3
    • /
    • pp.241-264
    • /
    • 2022
  • Bibliographic metadata can help researchers effectively utilize essential publications that they need and grasp academic trends of their own fields. With the manual creation of the metadata costly and time-consuming. it is nontrivial to effectively automatize the metadata construction using rule-based methods due to the immoderate variety of the article forms and styles according to publishers and academic societies. Therefore, this study proposes a two-step extraction process based on rules and deep neural networks for generating bibliographic metadata of scientific articlles to overcome the difficulties above. The extraction target areas in articles were identified by using a deep neural network-based model, and then the details in the areas were analyzed and sub-divided into relevant metadata elements. IThe proposed model also includes a model for generating reference summary information, which is able to separate the end of the text and the starting point of a reference, and to extract individual references by essential rule set, and to identify all the bibliographic items in each reference by a deep neural network. In addition, in order to confirm the possibility of a model that generates the bibliographic information of academic papers without pre- and post-processing, we conducted an in-depth comparative experiment with various settings and configurations. As a result of the experiment, the method proposed in this paper showed higher performance.

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju (제주 남부 HF Radar 표층해류 관측 현황 및 향후계획)

  • Dawoon, Jung;Jae Yeob, Kim;Jae-il, Kwon;Kyu-Min, Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.198-210
    • /
    • 2022
  • The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.

A Study on Machine Learning-Based Real-Time Automated Measurement Data Analysis Techniques (머신러닝 기반의 실시간 자동화계측 데이터 분석 기법 연구)

  • Jung-Youl Choi;Jae-Min Han;Dae-Hui Ahn;Jee-Seung Chung;Jung-Ho Kim;Sung-Jin Lee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.685-690
    • /
    • 2023
  • It was analyzed that the volume of deep excavation works adjacent to existing underground structures is increasing according to the population growth and density of cities. Currently, many underground structures and tracks are damaged by external factors, and the cause is analyzed based on the measurement results in the tunnel, and measurements are being made for post-processing, not for prevention. The purpose of this study is to analyze the effect on the deformation of the structure due to the excavation work adjacent to the urban railway track in use. In addition, the safety of structures is evaluated through machine learning techniques for displacement of structures before damage and destruction of underground structures and tracks due to external factors. As a result of the analysis, it was analyzed that the model suitable for predicting the structure management standard value time in the analyzed dataset was a polynomial regression machine. Since it may be limited to the data applied in this study, future research is needed to increase the diversity of structural conditions and the amount of data.