• 제목/요약/키워드: Post-Net

검색결과 256건 처리시간 0.029초

LIMITED OXIDATION OF IRRADIATED GRAPHITE WASTE TO REMOVE SURFACE CARBON-14

  • Smith, Tara E.;Mccrory, Shilo;Dunzik-Gougar, Mary Lou
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.211-218
    • /
    • 2013
  • Large quantities of irradiated graphite waste from graphite-moderated nuclear reactors exist and are expected to increase in the case of High Temperature Reactor (HTR) deployment [1,2]. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 ($^{14}C$), with a half-life of 5730 years. Fachinger et al. [2] have demonstrated that thermal treatment of irradiated graphite removes a significant fraction of the $^{14}C$, which tends to be concentrated on the graphite surface. During thermal treatment, graphite surface carbon atoms interact with naturally adsorbed oxygen complexes to create $CO_x$ gases, i.e. "gasify" graphite. The effectiveness of this process is highly dependent on the availability of adsorbed oxygen compounds. The quantity and form of adsorbed oxygen complexes in pre- and post-irradiated graphite were studied using Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and Xray Photoelectron Spectroscopy (XPS) in an effort to better understand the gasification process and to apply that understanding to process optimization. Adsorbed oxygen fragments were detected on both irradiated and unirradiated graphite; however, carbon-oxygen bonds were identified only on the irradiated material. This difference is likely due to a large number of carbon active sites associated with the higher lattice disorder resulting from irradiation. Results of XPS analysis also indicated the potential bonding structures of the oxygen fragments removed during surface impingement. Ester- and carboxyl-like structures were predominant among the identified oxygen-containing fragments. The indicated structures are consistent with those characterized by Fanning and Vannice [3] and later incorporated into an oxidation kinetics model by El-Genk and Tournier [4]. Based on the predicted desorption mechanisms of carbon oxides from the identified compounds, it is expected that a majority of the graphite should gasify as carbon monoxide (CO) rather than carbon dioxide ($CO_2$). Therefore, to optimize the efficiency of thermal treatment the graphite should be heated to temperatures above the surface decomposition temperature increasing the evolution of CO [4].

Polymorphisms of SLC22A9 (hOAT7) in Korean Females with Osteoporosis

  • Ahn, Seong Kyu;Suh, Chang Kook;Cha, Seok Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권4호
    • /
    • pp.319-325
    • /
    • 2015
  • Among solute carrier proteins, the organic anion transporters (OATs) play an important role for the elimination or reabsorption of endogenous and exogenous negatively charged anionic compounds. Among OATs, SLC22A9 (hOAT7) transports estrone sulfate with high affinity. The net decrease of estrogen, especially in post-menopausal women induces rapid bone loss. The present study was performed to search the SNP within exon regions of SLC22A9 in Korean females with osteoporosis. Fifty healthy controls and 50 osteoporosis patients were screened for the genetic polymorphism in the coding region of SLC22A9 using GC-clamped PCR and denaturing gradient gel electrophoresis (DGGE). Six SNPs were found on the SLC22A9 gene from Korean women with/without osteoporosis. The SNPs were located as follows: two SNPs in the osteoporosis group (A645G and T1277C), three SNPs in the control group (G1449T, C1467T and C1487T) and one SNP in both the osteoporosis and control groups (G767A). The G767A, T1277C and C1487T SNPs result in an amino acid substitution, from synonymous vs nonsynonymous substitution arginine to glutamine (R256Q), phenylalanine to serine (F426S) and proline to leucine (P496L), respectively. The Km values and Vmax of the wild type, R256Q, P496L and F426S were 8.84, 8.87, 9.83 and $12.74{\mu}M$, and 1.97, 1.96, 2.06 and 1.55 pmol/oocyte/h, respectively. The present study demonstrates that the SLC22A9 variant F426S is causing inter-individual variation that is leading to the differences in transport of the steroid sulfate conjugate (estrone sulfate) and, therefore this could be used as a marker for certain disease including osteoporosis.

저/고분자량 키토산에 의한 종래형 치과용 글라스아이오노머 시멘트의 강화 (Strengthening of conventional dental glass ionomer cement by addition of chitosan powders with low or high molecular weight)

  • 김동애;김규리;전수경;이정환;이해형
    • 대한치과재료학회지
    • /
    • 제44권1호
    • /
    • pp.69-77
    • /
    • 2017
  • The aim of this study was to investigate the effects of chitosan powder addition on the strengthening of conventional glass ionomer cement. Two types of chitosan powders with different molecular weight were mixed with conventional glass ionomer cement (GIC): low-molecular weight chitosan (CL; 50~190 kDa), high-molecular weight chitosan (CH; 310~375 kDa). The chitosan powders (CL and CH) were separately added into the GIC liquid (0.25-0.5 wt%) under magnetic stirring, or mixed with the GIC powder by ball-milling for 24 h using zirconia balls. The mixing ratio of prepared cement was 2:1 for powder to liquid. Net setting time of cements was measured by ISO 9917-1. The specimens for the compressive strength (CS; $4{\times}6mm$), diametral tensile strength (DTS; $6{\times}4mm$), three-point flexure (FS; $2{\times}2{\times}25mm$) with flexure modulus (FM) were obtained from cements at 1, 7, and 14 days after storing in distilled water at $(37{\pm}1)^{\circ}C$. All mechanical strength tests were conducted with a cross-head speed of 1 mm/min. Data were statistically analyzed by one-way ANOVA and Tukey HSD post-hoc test. The mechanical properties of conventional glass ionomer cement was significantly enhanced by addition of 0.5 wt% CL to cement liquid (CS, DTS), or by addition of 10 wt% CH (FS) to cement powder. The CL particles incorporated into the set cement were firmly bonded to the GIC matrix (SEM). Within the limitation of this study, the results indicated that chitosan powders can be successfully added to enhance the mechanical properties of conventional GIC.

브리콜라주 전략을 활용한 KEB하나은행의 전산통합 사례연구 (A Case Study of Information System Integration of KEB HanaBank using an Entrepreneurial Bricolage)

  • 박성재;이정훈;강현구
    • 한국산업정보학회논문지
    • /
    • 제24권5호
    • /
    • pp.27-39
    • /
    • 2019
  • 본 연구는 성공적인 M&A를 바탕으로 탁월한 성과를 실현하고 있는 KEB하나은행의 전산통합에 대한 사례 연구이다. KEB하나은행은 2018년 말 기준 국내외 영업점 896개, 임직원 12,881명, 총자산 326조, 당기순이익 1조9천억 원을 실현한 국내 시중은행 중 하나이다. 본 연구의 목적은 KEB하나은행의 M&A이후 전산통합(Information system integration)에 대한 독특한 사례와 전략을 통해서 시사점을 제공하는데 있다. 이를 위해 KEB하나은행 전산통합 관련 기업의 자원상황, 전략, 성과 등을 다양한 정보를 활용해 찾고, 자원제약이론(Resource dependency theory)과 기업가정신 브리콜라주(Entrepreneurial bricolage)에 대한 기존 연구들을 살펴보았다. 사후통합과정에서 조직의 성공적인 전산통합을 위해서는, 자원제약이론 관점에서 조직의 자원현황을 파악해야 하며, 이를 해결하기 위한 전략을 선택하여 추진해야 한다. 자원 제약 상황에서 성공적 전산통합을 위해서는 기업가정신 브리콜라주 전략이 필요할 것이다.

Design and 3D-printing of titanium bone implants: brief review of approach and clinical cases

  • Popov Jr, Vladimir V.;Muller-Kamskii, Gary;Kovalevsky, Aleksey;Dzhenzhera, Georgy;Strokin, Evgeny;Kolomiets, Anastasia;Ramon, Jean
    • Biomedical Engineering Letters
    • /
    • 제8권4호
    • /
    • pp.337-344
    • /
    • 2018
  • Additive manufacturing (AM) is an alternative metal fabrication technology. The outstanding advantage of AM (3D-printing, direct manufacturing), is the ability to form shapes that cannot be formed with any other traditional technology. 3D-printing began as a new method of prototyping in plastics. Nowadays, AM in metals allows to realize not only net-shape geometry, but also high fatigue strength and corrosion resistant parts. This success of AM in metals enables new applications of the technology in important fields, such as production of medical implants. The 3D-printing of medical implants is an extremely rapidly developing application. The success of this development lies in the fact that patient-specific implants can promote patient recovery, as often it is the only alternative to amputation. The production of AM implants provides a relatively fast and effective solution for complex surgical cases. However, there are still numerous challenging open issues in medical 3D-printing. The goal of the current research review is to explain the whole technological and design chain of bio-medical bone implant production from the computed tomography that is performed by the surgeon, to conversion to a computer aided drawing file, to production of implants, including the necessary post-processing procedures and certification. The current work presents examples that were produced by joint work of Polygon Medical Engineering, Russia and by TechMed, the AM Center of Israel Institute of Metals. Polygon provided 3D-planning and 3D-modelling specifically for the implants production. TechMed were in charge of the optimization of models and they manufactured the implants by Electron-Beam Melting ($EBM^{(R)}$), using an Arcam $EBM^{(R)}$ A2X machine.

딥러닝 기반의 무기 소지자 탐지 (Armed person detection using Deep Learning)

  • 김건욱;이민훈;허유진;황기수;오승준
    • 방송공학회논문지
    • /
    • 제23권6호
    • /
    • pp.780-789
    • /
    • 2018
  • 전 세계적으로 총기 사고는 인적이 드문 장소뿐만 아니라 사람들이 많이 모여 있는 공공장소에서도 빈번하게 일어난다. 특히, 권총과 같은 소형 총기 사고의 빈도수가 매우 높다. 그러므로 사람에 비해 상대적으로 매우 작은 크기의 객체인 권총을 가진 사람을 탐지하는 것은 사고의 피해를 최소화하는데 핵심적이다. '권총 든 사람'을 탐지하는 연구가 수행되고 있지만, 사람보다 권총은 상대적으로 크기가 작기 때문에 단일 객체만을 탐지하는 기존 객체 탐지 방법으로 '권총 든 사람'을 탐지하면 오류 발생 빈도수가 매우 높다. 이러한 문제점을 해결하기 위하여 권총으로 무장한 사람을 탐지하는 방법으로 APDA(Armed Person Detection Algorithm)를 제안한다. APDA는 입력 영상에서 합성곱신경망(Convolutional Neural Network, CNN) 기반의 인체 특징점 탐지 모델과 객체 탐지 모델을 병행하여 획득한 양 손목과 권총의 위치를 후처리 작업에서 이용하여 '권총 든 사람'을 탐지한다. APDA는 기존 방식보다 객관적 평가에서 재현율이 46.3% 향상되었고, 정밀도는 14.04% 향상되었다.

A Tuberculosis Detection Method Using Attention and Sparse R-CNN

  • Xu, Xuebin;Zhang, Jiada;Cheng, Xiaorui;Lu, Longbin;Zhao, Yuqing;Xu, Zongyu;Gu, Zhuangzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2131-2153
    • /
    • 2022
  • To achieve accurate detection of tuberculosis (TB) areas in chest radiographs, we design a chest X-ray TB area detection algorithm. The algorithm consists of two stages: the chest X-ray TB classification network (CXTCNet) and the chest X-ray TB area detection network (CXTDNet). CXTCNet is used to judge the presence or absence of TB areas in chest X-ray images, thereby excluding the influence of other lung diseases on the detection of TB areas. It can reduce false positives in the detection network and improve the accuracy of detection results. In CXTCNet, we propose a channel attention mechanism (CAM) module and combine it with DenseNet. This module enables the network to learn more spatial and channel features information about chest X-ray images, thereby improving network performance. CXTDNet is a design based on a sparse object detection algorithm (Sparse R-CNN). A group of fixed learnable proposal boxes and learnable proposal features are using for classification and location. The predictions of the algorithm are output directly without non-maximal suppression post-processing. Furthermore, we use CLAHE to reduce image noise and improve image quality for data preprocessing. Experiments on dataset TBX11K show that the accuracy of the proposed CXTCNet is up to 99.10%, which is better than most current TB classification algorithms. Finally, our proposed chest X-ray TB detection algorithm could achieve AP of 45.35% and AP50 of 74.20%. We also establish a chest X-ray TB dataset with 304 sheets. And experiments on this dataset showed that the accuracy of the diagnosis was comparable to that of radiologists. We hope that our proposed algorithm and established dataset will advance the field of TB detection.

Application of the SCIANTIX fission gas behaviour module to the integral pin performance in sodium fast reactor irradiation conditions

  • Magni, A.;Pizzocri, D.;Luzzi, L.;Lainet, M.;Michel, B.
    • Nuclear Engineering and Technology
    • /
    • 제54권7호
    • /
    • pp.2395-2407
    • /
    • 2022
  • The sodium-cooled fast reactor is among the innovative nuclear technologies selected in the framework of the development of Generation IV concepts, allowing the irradiation of uranium-plutonium mixed oxide fuels (MOX). A fundamental step for the safety assessment of MOX-fuelled pins for fast reactor applications is the evaluation, by means of fuel performance codes, of the integral thermal-mechanical behaviour under irradiation, involving the fission gas behaviour and release in the fuel-cladding gap. This work is dedicated to the performance analysis of an inner-core fuel pin representative of the ASTRID sodium-cooled concept design, selected as case study for the benchmark between the GERMINAL and TRANSURANUS fuel performance codes. The focus is on fission gas-related mechanisms and integral outcomes as predicted by means of the SCIANTIX module (allowing the physics-based treatment of inert gas behaviour and release) coupled to both fuel performance codes. The benchmark activity involves the application of both GERMINAL and TRANSURANUS in their "pre-INSPYRE" versions, i.e., adopting the state-of-the-art recommended correlations available in the codes, compared with the "post-INSPYRE" code results, obtained by implementing novel models for MOX fuel properties and phenomena (SCIANTIX included) developed in the framework of the INSPYRE H2020 Project. The SCIANTIX modelling includes the consideration of burst releases of the fission gas stored at the grain boundaries occurring during power transients of shutdown and start-up, whose effect on a fast reactor fuel concept is analysed. A clear need to further extend and validate the SCIANTIX module for application to fast reactor MOX emerges from this work; nevertheless, the GERMINAL-TRANSURANUS benchmark on the ASTRID case study highlights the achieved code capabilities for fast reactor conditions and paves the way towards the proper application of fuel performance codes to safety evaluations on Generation IV reactor concepts.

스마트 상수관망 수질관리 운영플랫폼 개발과 적용 (Development and implementation of smart pipe network operating platform focused on water quality management)

  • 박대희;김주환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.453-453
    • /
    • 2023
  • 상수관망의 수질사고와 이상상황 발생시 대응을 위해서는 급수구역에 설치되어 있는 자동수질측정기, 정밀여과장치, 재염소주입설비, 자동드레인 등의 계측·제어설비들 간의 유기적인 정보공유를 통한 제어를 필요로 한다. 스마트 상수관망 운영플랫폼은 이러한 인프라 시설의 운영방안을 고려하여 분산되어 있는 계측데이터를 통합감시 및 제어하는 시스템으로 개발되었다. 상수관망 운영플랫폼은 능동형 분석 제어기술을 도입하여, 스마트 상수관망 인프라 설비를 최적제어할 수 있도록 구현하였다. 통합운영 플랫폼은 PostgreSQL, PostGIS, GeoServer, OpenLayers 등의 기술을 활용하여 개발하였다. 플랫폼은 계측감시, 시설관리, 운영제어 등의 기능으로 구성되며, 상수도 업무지원을 위한 관망해석 및 네트워크 분석 기능을 지원한다. 본 시스템은 스마트 상수도 구축사업을 통해 구축한 유량·수질모니터링 장비와 수질관리를 위해 도입된 재염소, 자동드레인 설비의 운영상태를 실시간 조회하는 모니터링 프로그램과, 관망해석 프로그램 그리고 대상설비의 최적제어를 위한 운영관리 프로그램으로 구성되어 있다. 모니터링 프로그램은 현장에서 측정되고 있는 유량, 수압, 수질, 펌프운전 등의 상태를 실시간으로 감시하고 클라우드 데이터베이스에 저장·관리하는 기능을 수행한다. 관망해석 프로그램은 EPA_Net모형과 연계되어 관망수리·수질해석을 수행하는 부분으로 재염소설비의 염소 추가주입이나 자동드레인을 통한 배제시 나타나게되는 관의 수리·수질변화를 클라우드 컴퓨팅 환경에서 분석하고 결과를 가시화 하는 기능을 갖고 있다. 운영관리 프로그램은 재염소 주입이 필요할 경우 주입량의 산정하는 부분과 관망 파손이나 수질사고 발생시 최적 단수예상지역을 도출하는 기능을 보유하고 있다. 향후 스마트 상수관망의 능동형 수질관리를 추진하는 지자체에 도입하여 인프라운영관리 기술 확보 및 수질관리 능력 개선과 실시간 감시 및 위기 대응능력 향상에 기여할 것으로 기대된다.

  • PDF

Preclinical evaluation using functional SPECT imaging of 123I-metaiodobenzylguanidine (mIBG) for adrenal medulla in normal mice

  • Yiseul Choi;Hye Kyung Chung;Sang Keun Woo;Kyo Chul Lee;Seowon Kang;Seowon Kang;Joo Hyun Kang;Iljung Lee
    • 대한방사성의약품학회지
    • /
    • 제7권2호
    • /
    • pp.93-98
    • /
    • 2021
  • meta-iodobenzylguanidine is one of the norepinephrine analogs and reuptakes together with norepinephrine with norepinephrine transporter. The radioiodinated ligand, 123I-meta-iodobenzylguanidine, is the most widely used for single photon emission computed tomography imaging to diagnose functional abnormalities and tumors of the sympathetic nervous system. In this study, we performed cellular uptake studies of 123I-meta-iodobenzylguanidine in positive- and negative-norepinephrine transporter cells in vitro to verify the uptake activity for norepinephrine transporter. After 123I-meta-iodobenzylguanidine was injected via a tail vein into normal mice, Single photon emission computed tomography/computed tomography images were acquired at 1 h, 4 h, and 24 h post-injection, and quantified the distribution in each organ including the adrenal medulla as a norepinephrine transporter expressing organ. In vitro cell study showed that 123I-meta-iodobenzylguanidine specifically uptaked via norepinephrine transporter, and significant uptake of 123I-meta-iodobenzylguanidine in the adrenal medulla in vivo single photon emission computed tomography images. These results demonstrated that single photon emission computed tomography imaging with 123I-meta-iodobenzylguanidine were able to quantify the biodistribution in vivo in the adrenal medulla in normal mice.