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Abstract 

 
To achieve accurate detection of tuberculosis (TB) areas in chest radiographs, we design a 
chest X-ray TB area detection algorithm. The algorithm consists of two stages: the chest X-
ray TB classification network (CXTCNet) and the chest X-ray TB area detection network 
(CXTDNet). CXTCNet is used to judge the presence or absence of TB areas in chest X-ray 
images, thereby excluding the influence of other lung diseases on the detection of TB areas. It 
can reduce false positives in the detection network and improve the accuracy of detection 
results. In CXTCNet, we propose a channel attention mechanism (CAM) module and combine 
it with DenseNet. This module enables the network to learn more spatial and channel features 
information about chest X-ray images, thereby improving network performance. CXTDNet is 
a design based on a sparse object detection algorithm (Sparse R-CNN). A group of fixed 
learnable proposal boxes and learnable proposal features are using for classification and 
location. The predictions of the algorithm are output directly without non-maximal 
suppression post-processing. Furthermore, we use CLAHE to reduce image noise and improve 
image quality for data preprocessing. Experiments on dataset TBX11K show that the accuracy 
of the proposed CXTCNet is up to 99.10%, which is better than most current TB classification 
algorithms. Finally, our proposed chest X-ray TB detection algorithm could achieve AP of 
45.35% and AP50 of 74.20%. We also establish a chest X-ray TB dataset with 304 sheets. And 
experiments on this dataset showed that the accuracy of the diagnosis was comparable to that 
of radiologists. We hope that our proposed algorithm and established dataset will advance the 
field of TB detection. 
 
 
Keywords: Tuberculosis, Chest X-ray, Computer-aided diagnosis, Object detection, 
Attention. 
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1. Introduction 

Tuberculosis (TB) is a global infectious disease with a high fatality rate. The World Health 
Organization estimates that there will be approximately 9.96 million new cases of tuberculosis 
and 1.21 million deaths globally in 2019 [1]. TB is highly contagious, spreads easily, and 
spreads rapidly from person to person. To effectively treat TB patients and reduce the risk of 
disease transmission, a rapid and accurate diagnosis of TB is very important. If patients are 
diagnosed with TB early and treated, their chances of survival can be significantly improved 
[2]. 

The sputum smear test is the gold standard for the diagnosis of TB. It tests the sputum to 
find Mycobacterium tuberculosis and diagnose TB. However, the long wait times for the 
process, and the inability of many hospitals and resource-constrained communities in many 
developing countries to afford such conditions, make this diagnostic method very limited [3-
4]. Since TB has visual symptoms such as fibrosis, infiltration, mass, nodule, etc., professional 
radiologists can identify most symptoms on chest X-rays because chest X-ray imaging is 
cheaper and easier to obtain chest images. Therefore, chest X-ray is currently the primary 
method for diagnosing TB, and it is also the first choice for initial screening of lung diseases 
in most countries [5-9]. However, in actual work, some other lung diseases, such as pulmonary 
nodules, aseptic pneumonia, myocarditis, etc., have abnormalities similar to tuberculosis on 
chest X-rays (such as vague irregular lesions.) [10]. Therefore, if multiple symptoms appear 
together, it will bring great difficulties to the doctor in the diagnosis process. Moreover, when 
doctors examine chest radiographs, subjective differences, image quality, and fatigue caused 
by heavy work can significantly affect the diagnosis. Therefore, diagnosing and treating 
pulmonary tuberculosis is a time-consuming and challenging task [11]. 

In recent years, many researchers have been working to develop a computer-aided detection 
(CAD) system, hoping to use medical imaging and CAD systems for the initial diagnosis of 
TB. However, due to the complexity of chest radiograph data and the lack of pulmonary 
tuberculosis detection data sets, the existing CAD systems have low sensitivity and specificity 
in diagnosing pulmonary tuberculosis. 

Therefore, this paper proposes an algorithm to identify and detect TB regions on chest X-
ray images. The algorithm consists of two main network models: the Chest X-ray Tuberculosis 
Classification Network (CXTCNet) and the Chest X-ray Tuberculosis Detection Network 
(CXTDNet). We propose a channel attention mechanism (CAM) in CXTCNet and combine it 
with DenseNet. CXTCNet was used to reduce the false-positive probability of TB detection. 
Before TB detection, CXTCNet classifies chest X-ray images as healthy, TB, and unhealthy 
but non-TB (Sick). Then input the identified TB data into the detection network. CXTDNet is 
designed based on a sparse object detection algorithm (sparse R-CNN) to detect TB regions 
on TB data obtained from CXTCNet [12]. Moreover, we use CLAHE to pre-process the data. 
Finally, it is validated on TBX11K and our established dataset, proving that the algorithm in 
this paper can accurately locate the TB area on chest radiographs. 

The rest of the paper is structured as follows: Section 2 describes related work on 
tuberculosis detection. Section 3 describes the TBX11K dataset, and our established dataset 
TBX304 Section 4 describes the preprocessing method and the methodology of this study, etc. 
The experimental results and comparative analysis are presented in Section 5. Finally, the 
paper is summarized and concluded with future directions in section 6. 
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2. Related Work 
Before the rise of deep learning, the classification of TB and non-TB cases in chest radiographs 
was dominated by traditional methods. These methods first extract features by hand and then 
combine them with supervised learning algorithms for identification. Jaeger et al. [13] used a 
graph segmentation method to segment lung regions and obtained a set of image features from 
these regions. Then, they used a support vector machine (SVM) to classify the chest 
radiographs into TB and non-TB. Jeyavathana et al. [14] compared three ROI feature 
extraction methods: Local Binary Pattern (LBP), Histogram of Gradients (HOG), and Tamura 
Texture Features. They proposed a method to extract LHTGF features (LBP, HOG, LHT, and 
Gabour filters) from local windows to identify tuberculosis in the chest radiograph. Since 
traditional methods are based on manual extraction of features to process medical images, it 
requires algorithm designers to have a wealth of medical knowledge to extract high-quality 
features with sufficient discrimination. In addition, the performance of traditional machine 
learning classifiers is limited by the quality and distribution of training samples and is prone 
to overfitting due to insufficient training samples, resulting in poor recognition performance 
of the algorithm. With the rapid development of a convolutional neural network (CNN), CNN 
has gradually been used to identify tuberculosis in chest X-ray images [15-20]. For example, 
Hwang et al. [21] designed a deep-learning-based automatic detection (DLAD) algorithm. 
Experiments used a dataset with 54,221 normal chest radiograph images and 6768 chest 
radiograph images of active tuberculosis for validation. The final results showed that the 
DLAD algorithm performed well in detecting active tuberculosis, outperforming most 
physicians, including thoracic radiologists. Rahman et al. [22] used image preprocessing, 
image segmentation and classification techniques to detect TB and evaluated the performance 
of 9 different CNNs in identifying TB. The simulations showed that DenseNet201 achieves 
the best results in chest X-ray images after U-Net segmentation, with accuracy, precision, and 
recall rates of 98.6%, 98.57%, and 98.56%, respectively. Ayaz et al. [23] proposed a 
tuberculosis detection technique that combines handcrafted features with deep CNN features 
via ensemble learning. They evaluated the proposed method using the Montgomery and 
Shenzhen datasets. The simulations show that the maximum accuracy of the Montgomery 
dataset is 93.47%, and the maximum accuracy of the Shenzhen dataset is 90.6%. 

However, these studies only classified chest radiographs and did not locate TB areas. 
Currently, there are few research works related to the detection of TB area. The main reason 
is that tuberculosis data is too sensitive and violates patients' privacy. Therefore, few publicly 
available TB detection datasets bring significant obstacles to this research [24-25]. To solve 
this problem, Yun Liu et al. [26] established a TB detection dataset: TBX11K. This dataset 
contains 11200 X-ray images. In addition, the corresponding locations with TB areas in the 
TB samples are annotated. Finally, these improved detection algorithms are simulated on 
TBX11K and used as a baseline for future research. The proposed TBX11K dataset and 
reference baselines are expected to advance research in CAD systems and design better CAD 
systems through new powerful deep networks. 

3. Datasets 
We used two datasets, a public tuberculosis X-ray (TBX11K) dataset and one diagnosed, 
labeled, and created by several radiologists from the Shaanxi Provincial Tuberculosis Control 
Hospital. The public dataset was mainly used for experimental comparison with other existing 
studies. The dataset we established was used for comparison with radiologists, making this 
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study more convincing and reliable. Table 1 below shows the statistics of the number of 
datasets used in this paper, and the different datasets will be described in detail below. 
 

Table 1. Number of datasets used in this paper 
Dataset Category Number (sheets) Total (sheets) 

TBX11K 
Health 5000 

11494 diseased but non-TB (Sick) 5000 
TB 1190 

we established TB 304 

 

3.1 TBX11K 
TBX11K is a TB chest X-ray dataset established by Liu et al. It consists of 11,200 X-rays, of 
which 5,000 are healthy samples, 5,000 are unhealthy but non-TB samples, and 1,200 are TB 
samples. Also, the TB samples contained different types of TB. Among them, there are 924 
active cases, 212 latent cases, and 54 cases with both active and latent cases. The type of the 
remaining 10 cases is still to be determined. The pending of all images was 512 × 512. For 
images with TB manifestations, in addition to using boxes to locate TB areas, the type of each 
TB area is also differentiated. The 10 indeterminate cases out of the 1200 cases with TB 
manifestations that could not be recognized as TB type under today’s medical conditions were 
not used in this paper. In conclusion, TBX11K can be divided into the following categories, 
healthy, sick, and TB, of which TB is divided into latent and active. In Fig. 1, we show some 
of the data from the dataset TBX11K.  

(a) Health (b) Sick (c) Active TB (d) Latent TB  
Fig. 1. Shown is a partial X-ray image of the dataset TBX11K. a, b, c and d are the image data of 

Health, Sick, Active TB and Latent TB types respectively. 
 

3.2 Established dataset 
In order to validate proposed detection method in a real environment, a new TB dataset was 
created--TBX304. This dataset was established in collaboration with the Shaanxi Provincial 
Tuberculosis Hospital. Several radiologists diagnosed and labeled it with many years of 
clinical experience, which has a high degree of authenticity and accuracy. The dataset has 304 
chest X-ray images, all of which are active tuberculosis and marked with the corresponding 
bounding boxes of tuberculosis areas. The initial resolution of all X-ray images was around 
3000×3000. However, to improve the processing speed and ensure that the images do not lose 
features due to excessive compression, the resolution of all images was adjusted from 
3000×3000 to 512×512. Some of the data from our newly created dataset are shown in Fig. 2. 
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Fig. 2. Shown is a partial x-ray image of TBX304. 

4. Methods 

4.1 Algorithm structure 
Since there are many chest X-ray images of diseased but non-TB (Sick), the direct use of TB 
region detection algorithms may lead to misdiagnosis [10]. To solve this problem, we design 
a high-precision classification algorithm to classify chest X-ray images into healthy, TB, and 
sick. Efficient screening of TB area detection was carried out first, which helped reduce false 
positives in detection results and improve detection performance. TB is divided into latent TB 
and active TB. Latent TB means that the patient had TB before, but it has been cured and has 
no health consequences or contagiousness. On the other hand, active TB means that the patient 
has TB and is contagious, so the distinction between the two is important to the doctor's 
diagnosis [27]. Therefore, this paper not only detects TB areas but also identifies TB types, to 
assist physicians in more accurate diagnosis and treatment. Fig. 3 shows the detection 
flowchart of the chest X-ray TB area detection algorithm proposed in this paper. The overall 
process is as follows: first, the dataset is preprocessed with data, and then the chest X-ray 
images are classified into three categories by CXTCNet, i.e., healthy, sick, and TB. When the 
recognition result is healthy or sick, the result is output directly; when the recognition result is 
TB, the chest X-ray image is input to CXTDNet to detect the TB. 
 

TB X-ray dataset

CXTCNet

Health

Sick

TB

Output

CXTDNet

 

 
Fig. 3. The architecture of the TB detection algorithm proposed in this paper. CXTCNet is Chest X-

ray TB Classification Network. CXTDNet is Chest X-ray TB area Detection Network 
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4.2 Data preprocessing 
To improve the image quality, we used Contrast Limited Adaptive Histogram Equalization 
(CLAHE) to reduce the noise level and enhance the contrast of the medical image [28]. After 
preprocessing the image by CLAHE, it is more helpful to extract some essential features when 
executing the algorithm steps later and analyze the presence of tuberculosis lesions in that 
image by these features. CLAHE is a method to improve the low contrast problem of digital 
images. It has been shown that CLAHE is well suited for biomedical images such as 
mammograms, where it can improve image quality by removing noise [29-31]. Therefore, in 
this paper, CLAHE is introduced into the preprocessing stage of data to preprocess the data 
and improve the image's contrast. CLAHE limits the magnitude of contrast enhancement by 
limiting the height of the local histogram to avoid amplification of noise and excessive contrast 
enhancement. The algorithm redistributes the histogram part that exceeds the trimming limit 
to other parts of the histogram by setting a trimming limit value. Furthermore, we can limit 
the slope of the transform function during local histogram equalization to avoid the problem 
of noise amplification caused by the over-enhancement of narrowband pixels. 

CLAHE solves some of the problems caused by standard Histogram Equalizatio (HE): (1) 
areas with too much contrast enhancement become noisy (2) some areas become darker or 
brighter after adjustment, resulting in more details lost. Moreover, CLAHE also solves the 
problems such as image distortion brought by Adaptive histogram equlization (AHE). CLAHE 
preprocesses the data used in this paper at the beginning, and the preprocessed images are 
shown in Fig. 4. The image on the left is the original image, and the one on the right is the 
image obtained after CLAHE preprocessing. As shown in Fig. 4, the white area in the box in 
the left image is the tuberculosis lesion. The contrast between this location and the lung 
shadow in the original image is low, and the characteristics of the tuberculosis lesion are not 
very obvious. In contrast, the image after CLAHE preprocessing can see the image details with 
high contrast and at the same time has good noise suppression. It is known that preprocessing 
with CLAHE can enhance the image details while avoiding noise amplification and has a good 
enhancement effect. 

 

 
Fig. 4. Comparison of the original image (left) and the image after CLAHE preprocessing (right). 
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4.3 Chest X-ray TB Classification Network (CXTCNet) 
In recent years, deep learning has evolved rapidly, and with it many convolutional neural 
network (CNN) models, including LeNet5 proposed in 1998, and later AlexNet, DenseNet, 
SENet, etc [32-36]. Studies have proved that CNN has achieved great success and has been 
widely adopted by the computer vision community, suitable for tasks such as image 
classification and image detection [37-39]. A CNN is structured mainly with several 
convolutional (Conv) and pooling layers, and at least one fully connected (FC) layer is 
connected at the end. Among them, the convolution layer has multiple convolution kernels 
with trainable weights. Multiple feature maps are finally generated by convolving the image 
with each convolution kernel and adding a bias to the convolution layer. The pooling layer is 
a non-linear down-sampling process that can save the relevant information about the task, 
increase the receptive field of the feature map, and remove irrelevant details. The previous 
convolutional and pooling layers are for feature extraction of the image, and the fully 
connected layer is to classify the extracted features. The classification is realized by mapping 
the features to neurons. 

By analyzing the recognition effects of existing classification methods, it is found that these 
methods perform well in many image classification scenarios. However, for complex 
application scenarios such as medical images, the recognition accuracy that can be achieved 
is not very good, especially for image data of chest radiographs where multiple diseases exist, 
and the lesions of different diseases are relatively similar. Therefore, we did not choose to use 
the existing CNN model directly for chest radiograph classification but by analyzing the 
existing TB classification studies and classification networks. Then DenseNet was chosen as 
the backbone, a channel attention module (CAM) was proposed, which led to the design of a 
chest radiograph tuberculosis classification network (CXTCNet). The image can be 
convolutional operated to get the feature map. To obtain the channel feature on the feature 
map so that the neural network can learn the relationship between the feature map channels 
through backpropagation, we designed CAM. CAM is composed of different pooling 
operations, fully connected layers, and activation functions, as shown in Fig. 5.  

 

U

H 

C
W

Max Pooling

Avg Pooling

Global Pooling

... ... ... ... ... ... ... ...

1*N*C
1*1*C

 
Fig. 5. Structure of the Channel Attention Module (CAM). 

 
When the feature map enters CAM, CAM first uses three different pooling operations to 

extract features of the feature map. Then use the first FC to map the feature information and 
at the same time, play the role of dimensionality reduction. The activation function of this FC 
uses ReLU. Finally, the second FC is used to upgrade the dimension, and the activation 
function Sigmiod is used to limit the output to (0, 1) as the weight of each channel of the 
feature map. CAM uses the learned weights to limit or play the importance of the 
corresponding channels and control the influence of different channels on the final output 
result. In order to obtain the weight coefficients of each channel, the global average pooling 
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(GAP) is used to extract the global feature information of each channel of the feature map, and 
the value calculated by GAP is the global distribution of the corresponding feature channels. 
As shown in Fig. 6, GAP transforms the feature map of size W*H*C into a weight coefficient 
of 1*1*C. The calculation formula of GAP is: 

 
W H

GAP C
i 1 j 1

1F u ( i, j )
W H = =

=
× ∑∑  (1) 

FGAP is the result of the GAP, W and H are the width and height of the feature map, respectively. 
C is the channel number of the feature map, and uC(i, j) is the value of the i-th row and j-th 
column in the c-th channel of the input feature. 

 

GAP

 

Fig. 6. Extract the information of feature maps using GAP. 
 

However, only the learning of global features will result in the loss of some information, 
so we have added local average pooling and local maximum pooling to retain more image 
feature information to improve the final recognition performance of the network. Moreover, 
to reduce the number of parameters of CNN in the calculation process, we limit the results of 
local pooling. When the size of the feature map is greater than or equal to 128*128, the pooling 
window is 7*7 and the stride is 7; when the size of the feature map is greater than or equal to 
64*64, the pooling window is 5*5 and the stride is 5; When the size of the graph is smaller 
than 64*64, the pooling window is 3*3, and the stride is 3. After the above three pooling 
operations, a feature map of size 1*N*C can be obtained, and then the feature matrix is input 
to the first FC and the activation function ReLU. In this way, the complex correlation between 
the channels can be well fitted. The selection of fewer neurons is also beneficial in reducing 
the number of parameters and the amount of calculation. The resulting feature matrix with a 
size of 1*N*C will be input to the second fully connected layer and the activation function 
sigmoid, and the number of neurons is the same as the number of channels. Therefore, a feature 
matrix with a size of 1*1*C can be obtained, and each value is between (0, 1), representing 
the weight ratio of each channel. Finally, a multiplication operation is used to multiply the 
obtained weight coefficients with the corresponding feature channels in the feature map. The 
weight coefficients are used to suppress or play the importance of the corresponding channels. 
Furthermore, through backpropagation, the weight coefficients corresponding to unimportant 
channels are reduced, and the weight coefficients corresponding to more important channels 
are increased, so that the network can learn more features. 

Dense Convolutional Neural Network (DenseNet) eliminates the problems of gradient 
disappearance and gradient explosion by establishing dense connections between different 
layers. At the same time, it uses the shallow features of the network model to enable the 
network to learn more feature information and realize Feature reuse. Compared with other 
deep convolutional neural network models such as ResNet, DenseNet reduces a large number 
of training parameters, effectively suppressing the overfitting phenomenon in the model 
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training process, making DenseNet stronger in generalization ability and better performance. 
Therefore, we use DenseNet as the backbone and cooperate with CAM to fuse the image's 
spatial feature information and channel feature information. In order to ensure that sufficient 
feature information is learned, we place the CAM behind the Dense Block to avoid the loss of 
feature information caused by operations at the transition layer. The specific connection is 
shown in Fig. 7. After the feature map passes through the Dense Block, a new feature map is 
obtained. The calculation formula of the Dense Block is: 
 [ ]0 1 l 1H F( h h h )−= ， ， ，  (2) 
Where H is the output of Dense Block and [h0, h1,…,hl-1] is the feature map of the output of 
layers 0 to l-1, respectively. Then, the feature map is input to CAM to obtain the weight matrix, 
which is calculated by： 
 CAM 2 1 GAP MAX AVGX F (H) s(W ,(r(W ,(F (H),F (H),F (H)))= =  (3) 
Where X is the weight coefficient of CAM output, FGAP, FMAX, FAVG are the results of feature 
map obtained by global average pooling, local maximum pooling and local average pooling, 
respectively. W1 is the neuron weight of the first FC, r is the activation function ReLU, W2 is 
the neuron weight of the second FC, and s is the activation function Sigmoid. Finally, the 
weight matrix is multiplied by the input feature map, and the calculation formula is as follows:  
 H F(H X)= ，  (4) 
Where 𝐻𝐻� is the output result and F represent the corresponding channel multiplication of the 
feature map output by the Dense Block and the weight coefficient obtained by the CAM. 

We added CAM to each Dense Block, because the module has a small amount of 
parameters, so it can rudece the calculation burden of the network. Finally, the Softmax 
classifier is used for classification, and the formula of the loss function is as follows: 

 
3

1

i

j

xk

cla i i i k x
i i

j

eL y log a y log( )
e

=

=

= − = −∑ ∑
∑  (5) 

Where y is the true value, a is the value obtained by Softmax, and k is the number of categories. 
The classification network recognizes the chest radiographs of patients suffering from 

tuberculosis in advance, thereby preventing other lung diseases with similar abnormalities to 
tuberculosis from affecting the test results, reducing false positives in tuberculosis area 
detection, and improving the detection performance.  

 

Conv Conv Conv Conv CAM

Dense Block

 

Fig. 7. CAM and DenseNet connection structure diagram. 
 

4.4 Chest X-ray TB area Detection Network (CXTDNet) 
Object detection is an important branch of computer vision. With the deepening of neural 
network theoretical research and the substantial increase in hardware GPU computing power, 
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it has become a hot spot in global artificial intelligence research [40-41]. Object detection was 
mainly set up with dense candidate boxes. For one-stage detectors, such as YOLO, SSD, 
RetinaNet. [42-47], these detectors would directly predict the classification and position of 
thousands of dense anchor boxes placed in the image space, and their candidate box settings 
resulted in the presence of a large number of hyperparameters. These hyperparameters include 
the number of anchors at each position, the size of the anchor, and the aspect ratio of the anchor. 
For two-stage detectors, such as the Faster RCNN, the foreground and background regions are 
first classified from a predetermined dense set of anchor boxes, resulting in sparse region 
proposals, which are then put into the later network for finer classification and position 
regression [48]. However, dense candidate boxes are set in the model in the one-stage and two-
stage, which is a significant burden to the detection network. Furthermore, these dense object 
detection algorithms produce many similar results, so at the end a post-processing with non-
maximum suppression (NMS) is required [49]. Recently, the DETR network, which migrates 
transformers to computer vision tasks, has received widespread attention. This network 
transforms the target detection task into a task of set prediction, using a transformer coder-
decoder structure and a bilateral matching approach to obtain prediction results directly from 
the input image [50]. Unlike other detection methods, DETR has no proposal, no anchor, no 
center, and no cumbersome NMS. It directly predicts the detection boxes and categories. It 
uses the Hungarian algorithm of bipartite graph matching to achieve the task of object 
detection with a clever combination of CNN and transformer. Nevertheless, DETR has many 
disadvantages, such as slow convergence and high inference memory usage. Therefore Peize 
Sun et al. proposed sparse R-CNN, Sparse R-CNN is extremely simple, with no need to set an 
annoying dense anchor, no RPN, no complex post-processing and NMS, no need to balance 
the RPN and fast RCNN training process carefully, and no hard-to-tune hyperparameters. The 
effect is better than Faster R-CNN and the convergence speed is much faster than DETR, so 
we choose Sparse R-CNN to be the detection network. The sparse R-CNN is a simple, unified 
network composed of a backbone network, a dynamic instance interaction head, and two task-
specific prediction layers, as shown in Fig. 8. In the initial input of Sparse R-CNN, in addition 
to the input image data, a set of proposal boxes and corresponding proposal features are also 
input. This set of proposal boxes and proposal features is optimized along with other 
parameters in the network. 
 

Cls 

Reg

... ...

K-th box

Dynamic Head k

K-th feature

 

Fig. 8. Structure of Sparse R-CNN. 
 

The backbone network used by Sparse R-CNN is a FPN based on the ResNet architecture 
[51]. After analyzing the appeal classification experiments, it is known that our proposed 
CXTCNet can extract enough image feature information, so we change the FPN based on 
ResNet architecture to CXTCNet-based FPN as our backbone network. 
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The proposal boxes of sparse R-CNN are not from FPN, but are used as region proposals 
through a set of learnable proposal boxes (n4) [52]. The value range of the proposal box is (0, 
1), and the number of the proposal box is determined by the hyperparameter d, which 
represents the d group of proposal boxes. Each group of proposal boxes has 4 values, 
representing the center coordinate, height, and width, respectively. These learned proposal 
boxes can be viewed as initial guesses for the regions most likely to contain objects in the 
image. A back-propagation algorithm will update the parameters of proposal boxes during the 
training process. 

Although the proposal box is a concise and clear way to describe an object, it can only 
represent the rough positioning of the object. It cannot represent the more detailed feature 
information in the image, such as the posture and shape of the object. Therefore, the author 
added a proposal feature, whose size is N*d, to enrich the latent information of the feature. 
The number of proposal features is the same as the number of proposal boxes, and there are d 
groups of proposal features when there are d groups of proposal boxes. There are N values in 
each set of proposed features, and the default value of N is 256. 

Fig. 9 shows the architecture of the dynamic instance interactive header. Sparse R-CNN 
first uses the RoIAlign operation to extract the features of each proposal box. Then each RoI 
feature is fed into its exclusive head for object location and classification, where each head is 
conditioned on a specific proposal feature. Finally, each RoI feature will interact with the 
corresponding proposal feature to filter out ineffective bins and outputs the final object feature. 
For lightweight design, continuous 1×1 convolution with ReLU activation function is used to 
realize the interactive process. To obtain a more discriminative feature, each feature is 
convolved with the RoI area feature to obtain a more discriminative feature. The final 
regression prediction uses FC and ReLU activation functions. 
 cls cls L1 L1 giou giouLoss L + L + Lλ λ λ=     (6) 
Where Lcls represents the classification loss, and the focal loss is used here. The regression loss 
for objects is the weighted sum of the L1 loss and the generalized iou loss, i.e. L1 and Lgiou in 
Eq. (6). λcls,, λL1, and λgiou denote the coefficients of Lcls, L1, and Lgiou, respectively [53]. 
 

RoI Feat 1

Proposal Feat k

Conv

Params

view fc

fc

cls

reg

RoI Feat 1

Proposal Feat k

Conv

Params

view fc

fc

cls

reg

... ...  

Fig. 9. The structure of the Dynamic instance interactive head. 
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5. Experimental results and analysis 

5.1 Experimental analysis of CXTCNet 

5.1.1 Evaluation metrics 
Since the classification network is used to identify healthy, sick and TB, the evaluation metrics 
used in this experiment are Accuracy, Precision, Recall and F1 score.  

5.1.2 Parameters adjustment 
Due to the unbalanced distribution of the data in the three categories of TBX11K, there are 
5000 images for both health and sick, but only 1200 for TB, which will lead to overfitting if 
training is performed directly. Furthermore, we only selected 1190 radiographs with TB 
manifestations out of 1200, and the uncertain 10 we screened out. Therefore, we randomly 
took 1190 images from each class of data and performed data enhancement to have more 
balanced data. Then the enhanced data is randomly divided into the training set, validation set 
and test set, with a ratio of 6:2:2. 8 V100 GPUs were used for experiments, and the deep 
learning framework was PyTorch. Through experimental verification and analysis, the optimal 
parameter settings are obtained. Table 2 shows the experimental results using different 
parameters. The optimizer used is Adam. From Table 2, when the learning rate is 0.0001, the 
input size is 512*512, the batch size is 16, and the epoch is 500, the best classification 
performance is achieved with 99.10% accuracy, 99.00% precision, and 99.25% recall. 
 

Table 2. Experimental results of different parameters 
Learning rate Input size Batch size Epoch Accuracy Precision Recall F1 

0.001 512*512 16 500 96.07 96.53 96.92 96.73 
0.0001 512*512 16 500 99.10 99.00 99.25 99.12 
0.0001 512*512 16 300 98.20 97.85 98.27 98.06 
0.001 224*224 16 500 95.97 95.70 96.05 95.87 
0.0001 224*224 16 500 97.88 97.32 98.13 97.72 
0.0001 512*512 8 500 98.13 97.72 98.54 98.13 
0.0001 512*512 16 1000 98.87 98.54 98.93 98.73 

5.1.3 Validation of CAM 
To verify the effect of CAM on the algorithm's performance, we experimentally compared the 
algorithm with and without CAM. First, we experimentally verified the algorithm's 
performance without CAM and adjusted the model parameters to obtain the optimal parameter 
settings: optimizer is Adam, the learning rate is 0.0001, the input size is 512*512, the batch 
size is 16, and the epoch is 500. Fig. 10 shows the accuracy change curves of the models with 
and without CAM in the training process. As shown in Fig. 10, when the classification network 
does not incorporate CAM, the accuracy during training is about 93%, and the fluctuation of 
accuracy is high. The accuracy on the test set is also only 91.87%, and the precision and recall 
rates are also low. When the classification network is added to the CAM, the loss steadily 
decreases during the training process, and the accuracy rate gradually increases. Finally, the 
accuracy rate on the test set is also significantly improved, as high as 99.10%, and the precision 
and recall have reached 99.00% and 99.25% respectively. Therefore, the addition of CAM 
enables the model to learn not only the spatial features, but also the channel features. This 
module significantly improves the performance of the classification network and achieves the 
purpose of accurately identifying different types of chest X-ray images. 
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Fig. 10. Comparison of accuracy between adding CAM to the algorithm and not adding CAM. 

 

5.1.4 Comparison with other classification algorithms 
Our proposed algorithm (CXTCNet) has also been compared with other mainstream 
classification algorithms, using classification network models such as ResNet, DenseNet, and 
SENet. The following experimental results are finally obtained through constant adjustment 
of hyperparameters, as shown in Table 3. First, using resnet50 to experiment on the dataset 
and by adjusting the parameters, the highest accuracy of 87.91%, accuracy of 87.79% and 
recall of 87.05% were obtained, which is not as good as the performance of CXTCNet. The 
results of resnet101 are not excellent either. The highest accuracy rate is 90.15%, the accuracy 
rate is 91.35%, and the recall rate is 87.56%. DenseNet121 and DenseNet169 is slightly better, 
among which DenseNet169 is relatively good, with accuracy, precision and recall rates of 
92.87%, 93.79% and 88.84% respectively. Finally, we also used SENet, an attention 
mechanism, for experimental validation. Experiments show that SENet outperforms the 
previous ResNet and DenseNet with an accuracy of 95.32%, precision of 96.23%, and recall 
of 94.85%. Although SENet is good, it is still 3.78 percentage points lower than CXTCNet. 
Therefore, we know that our proposed CXTCNet can accurately identify the features in 
different types of chest X-ray images and classify these features. Its performance is better than 
most existing classification network models.  
 

Table 3. Comparison results of CXTCNet and other classification algorithms (%) 
Method accuracy precision recall F1 

ResNet50 87.91 87.79 87.05 86.92 
ResNet101 90.15 91.35 87.56 89.41 

DenseNet121 91.07 90.57 91.73 91.46 
DenseNet169 92.87 93.79 88.84 91.25 

SENet 95.32 96.23 94.85 95.54 
CXTCNet (Our Method) 99.10 99.00 99.25 99.12 

 
This paper also compares with some of the more advanced pulmonary tuberculosis 

identification algorithms. The following TB classification algorithm mainly uses the Shenzhen 
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and Montgomery County datasets. Therefore, when comparing with these algorithms, the 
datasets used in this paper are also these two datasets. Jaeger et al [12] used a variety of 
machine learning techniques to classify chest radiographs in these two datasets. Among them, 
the maximum accuracy rate of the Montgomery County dataset in the United States is 78.3%, 
and the accuracy rate of the Shenzhen dataset is 84%. Vajda et al. [54] proposed a fully 
automated chest X-ray system. The maximum accuracy rate obtained by the system on the 
Montgomery County dataset in the United States is 84.75%, and the maximum accuracy rate 
obtained on the Shenzhen dataset is 97.03%. Pasa et al. [55] conducted experiments on both 
datasets simultaneously and achieved a maximum accuracy of 92.5%. Tasci et al. [56] 
proposed a voting and preprocessing variant-based ensemble CNN model for TB detection. 
The accuracy of the proposed method on the Montgomery and Shenzhen datasets is 97.500% 
and 97.699%, respectively. Guo et al. [57] proposed an ensemble process to detect and localize 
tuberculosis using deep learning. The maximum accuracies obtained by this method on the 
Montgomery and Shenzhen datasets are 95.49% and 98.46%, respectively. The classification 
algorithm proposed in this paper obtained the maximum accuracy rates of 98.93% and 99.07% 
in the Shenzhen and Montgomery datasets, respectively. Furthermore, the accuracy rate 
obtained after merging the two datasets also reached 98.21%. The detailed comparison results 
are shown in Table 4. Compared with the work of Jaeger et al., the method proposed in this 
paper greatly improves the performance of TB classification on chest radiograph. 

Table 4. Comparison of the accuracy of the classification algorithm proposed and other pulmonary 
tuberculosis identification algorithms on different datasets (%) 

Method Shenzhen dataset Montgomery dataset Shenzhen and  
Montgomery dataset 

Jaeger et al. (2013) [12] 84 78.3 - 
Ayaz et al. (2021) [22] 90.6 93.47 - 
Vajda et al. (2018) [54] 97.03 84.75 - 
Pasa et al. (2019) [55] - - 92.5 
Tasci et al. (2021) [56] 97.699 97.5 - 
Guo et al. (2020) [57] 98.46 95.49  

CXTCNet (Our Method) 98.93 99.07 98.21 

 

5.2 Experimental analysis of CXTDNet 

5.2.1 Evaluation metrics 
For assessing of TB area detection, our evaluation metrics are consistent with those used by 
COCO, with the main values being AP and AP50. AP is the Iou threshold in the interval 0.5 - 
0.95, and AP is calculated at 0.05 intervals and averaged thereafter. AP50 is the AP with an 
IoU threshold of 0.5 [58]. 

5.2.2 Parameters adjustment 
In CXTDNet, we first trained using the default parameters of sparse R-CNN, i.e., ResNet50 
was used as the backbone, the optimizer was AdamW and the weight decay was 0.0001, the 
batch size was 16, all models were trained on 8 GPUs, and the deep learning framework was 
PyTorch. The default number of iterations is 100 epochs, and the initial learning rate is set to 
2.5*10-5, divided by 10 at epoch 80 and 90, respectively. The input size of the image is 
512*512, and the default number of proposed boxes and proposed features are 100 and 100 
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respectively. Then the parameters were adjusted to find the optimal parameter settings for 
CXTDNet. The different results caused by different parameters are shown in Table 5. It is 
known from the experiments that the parameters that can have a significant impact on the 
results are batch size, epochs, learning rate, input size, and the number of proposed boxes. 
From Table 5, the optimal parameters of CXTDNet are set as follows: batch size is 16, epochs 
are 110, the learning rate is 2.5*10-5, the input size is 512*512, and the number of proposed 
boxes is 300. Furthermore, because no other two types of data were included, i.e., health and 
sick, CDTDNet achieved very good results. The final AP obtained was 45.35%, and the AP50 
was 74.20%. Fig. 11 shows the detection results of CXTDNet. Although the overall results 
were good, the detection of latent TB was poor, with an AP of only 30.78%. There are only 
212 latent TB chest X-ray images in the dataset, while there were 924 active TB chest X-ray 
images, and the data set also includes two types of chest radiographs that co-exist. However, 
considering the high accuracy of detection for TB areas, it has been possible to reach the role 
of assisting doctors in diagnosis. So this data imbalance issue will continue to be looked at in 
later studies. 

 

Table 5. Experimental results of different parameters of CXTDNet 

Input size Proposed 
boxes Batch size Learning rat Epochs AP(%) AP50(%) 

512*512 100 16 2.5*10-5 100 34.21 65.22 
224*224 100 16 2.5*10-5 100 36.64 67.53 
512*512 200 16 2.5*10-5 110 39.31 69.71 
512*512 300 8 2.5*10-5 110 35.90 66.28 
512*512 300 16 2.5*10-5 100 45.35 74.20 
512*512 300 16 1.0*10-5 110 38.18 67.70 
512*512 300 16 2.5*10-5 120 40.85 72.68 

 

 
Fig. 11. The detection results of CXTDNet are shown here. The marked boxes in the figure show the 

TB areas detected by CXTDNet, with the corresponding TB types and the calculated confidence. 
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5.2.3 Validating the role of CXTCNet 
In order to validate the enhancement brought by the classification network (CXTCNet) to the 
final detection results, we performed a set of validation experiments. Chest X-ray images were 
placed directly into Sparse R-CNN for training and testing, using the same backbone and 
parameter settings as described above. Fig. 12 shows the results of this part of the experimental 
comparison. From Table 6, we can see that the detection results obtained by putting the chest 
X-ray images of healthy, sick and TB into Sparse R-CNN directly are not very satisfactory. 
AP is only 25.74%, and AP50 is only 63.15%. In contrast, our proposed algorithm for TB 
detection based on the attention mechanism and Sparse R-CNN achieves an AP of 44.90% 
and an AP50 of 73.28%. This analysis is mainly due to the similarity of abnormalities such as 
aseptic pneumonia, myocarditis, exudates, infiltrates, masses, nodules, and so on in chest 
radiographs with tuberculosis, which causes many misclassifications. Due to the presence of 
these pathologies, directly using the target detection algorithm would raise the false positive 
rate. With our proposed Chest X-ray Tuberculosis Classification Network (CXTCNet) for 
early screening, the Chest X-ray Tuberculosis Detection Network (CTXDNet) can avoid this 
problem and, thus, precisely local TB areas. 
 

Table 6. Results of experimental validation using Sparse R-CNN on TBX11K and our proposed TB 
detection algorithm using attention mechanism and Sparse R-CNN on TBX11K 

Method AP(%) AP50(%) 
Sparse R-CNN 25.74 63.15 

Our Method 44.90 73.28 
 

 
Fig. 12. When detecting whether the network uses CXTCNet, the change curve of AP50 during the 
training process, the blue is the change curve of using CXTCNet to screen in advance, and the red is 

the change curve of direct detection. 
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5.2.4 Comparison with other detection algorithms 
The proposed chest X-ray TB detection algorithm is also compared with various mainstream 
target detection algorithms, including Faster R-CNN, SSD, RetinaNet, etc. The backbone of 
these detection algorithms is pre-training using ImageNet. Table 7 shows the results of 
comparing our proposed algorithm with different detection algorithms. From Table 7, it can 
be seen that among these mainstream detectors, the detection of TB areas in chest X-ray 
images is poor. FOCS has the lowest AP50 of 46.6%, RetinaNet of 52.1%, and SSD of 52.3%, 
while Faster R-CNN has the highest AP50 of 57.3%. From the performance results of the 
detection, the performance of these detection algorithms is significantly lower than that of our 
proposed detection method. 
 

Table 7. Comparison results between CXTDNet and multiple detection algorithms 
Method AP(%) AP50(%) 

Faster R-CNN 22.7 57.3 
SSD 22.6 52.3 

RetinaNet 22.2 52.1 
FCOS 18.9 46.6 

Our Method 44.90 73.28 

5.2.5 Comparison with radiologists 
Finally, to validate the effectiveness of our proposed algorithm based on attention mechanism 
and Sparse R-CNN for chest X-ray TB area detection in real-world scenarios, we tested it on 
our established dataset TBX304 and compared it with the diagnostic results of several 
radiologists in Shaanxi provincial tuberculosis control hospital. The experiments show that the 
accuracy of our proposed detection algorithm on this dataset is no less than that of professional 
physicians. Fig. 13 shows the detection results of our proposed algorithm on TBX304. 
 

 
Fig. 13. The detection results of our proposed algorithm for TBX304 are shown here. The marked 

boxes in the figure show the TB areas detected by the algorithm, with the corresponding TB types and 
the calculated confidence. 

6. Conclusion 
Early diagnosis is essential for the treating and preventing tuberculosis, a major infectious 
disease. Inspired by the rapid development of computer-aided diagnosis systems and deep 
learning, we use CLAHE to preprocess the chest radiograph data to improve the contrast 
between key features of pulmonary tuberculosis and the background. Then, we propose a 
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tuberculosis detection algorithm using attention mechanism and Sparse R-CNN for detecting 
tuberculosis areas on chest X-ray images. The algorithm improves the reliability and accuracy 
of the whole algorithm by designing two networks, the chest X-ray TB classification network 
(CXTCNet) and the chest X-ray TB area detection network (CXTDNet). We design a channel 
attention module (CAM) in the classification network to enable the deep learning network to 
extract more helpful information about the image features. In the detection network, we 
designed CXTDNet based on the sparse object detection algorithm Sparse R-CNN, using a 
fixed set of learnable suggestion frames and learnable suggestion features for classification 
and localization. By combining CXTCNet and CXTDNet, we achieve the purpose of 
accurately locating TB areas in chest X-ray images. Moreover, the algorithm will distinguish 
latent TB from active TB during detection process. To further advance the development of TB 
detection, we build a new TB dataset called TBX304. The final experimental results 
demonstrate that our proposed attention mechanism and Sparse R-CNN based chest X-ray TB 
area detection algorithm outperforms the established detectors on the dataset TBX11K, In the 
dataset we build TBX304 performs no worse than radiology professionals. Although the chest 
X-ray TB area detection algorithm proposed in this paper can accurately locate the TB area in 
the image, the AP of the latent TB is relatively low due to the small amount of data on latent 
TB. We will consider adding latent tuberculosis samples to the newly created dataset or 
borrowing the current methods of small sample learning to study this problem. At the same 
time, the tuberculosis detection model is relatively complex and not easy to deploy, so 
reducing the complexity of the model is also a problem that needs to be solved in the next step 
of this research. 

References 
[1] J. Chakaya, M. Khan, F. Ntoumi, E. Aklillu, R. Fatima, P. Mwaba, N. Kapata, S. Mfinanga, S. E. 

Hasnain, P. D. M. C. Katoto, A. N. H. Bulabula, N. A. Sam-Agudu, J. B. Nachega, S. Tiberi, T. 
D. McHugh, I. Abubakar, and A. Zumla, “Global Tuberculosis Report 2020–Reflections on the 
Global TB burden, treatment and prevention efforts,” International Journal of Infectious Diseases, 
vol. 113, pp. S7-S12, 2021. Article (CrossRef Link) 

[2] E. Harding, “WHO global progress report on tuberculosis elimination,” The Lancet Respiratory 
Medicine, vol. 8, no. 1, p. 19, 2020. Article (CrossRef Link) 

[3] P. Andersen, M. E. Munk, J. M. Pollock, and T. M. Doherty, “Specific immune-based diagnosis 
of tuberculosis,” The Lancet, vol. 356, no. 9235, pp. 1099-1104, 2000. Article (CrossRef Link) 

[4] A. Bekmurzayeva, M. Sypabekova, and D. Kanayeva, “Tuberculosis diagnosis using 
immunodominant, secreted antigens of Mycobacterium tuberculosis,” Tuberculosis, vol. 93, no. 4, 
pp. 381-388, 2013. Article (CrossRef Link) 

[5] S. Candemir, S. Jaeger, K. Palaniappan, J. P. Musco, R. K. Singh, Z. Xue, A. Karargyris, S. Antani, 
G. Thoma, and C. J. McDonald, “Lung segmentation in chest radiographs using anatomical atlases 
with nonrigid registration,” IEEE transactions on medical imaging, vol. 33, no. 2, pp. 577-590, 
2014. Article (CrossRef Link) 

[6] A. Konstantinos, “Testing for tuberculosis,” Australian Prescriber, vol. 33, pp. 12-18, 2010. 
Article (CrossRef Link) 

[7] C. Miller, K. Lonnroth, G. Sotgiu, and G. B. Migliori, “The long and winding road of chest 
radiography for tuberculosis detection,” European Respiratory Journal, vol. 49, no. 5, p. 1700364, 
2017. Article (CrossRef Link) 

[8] M. R. A. Van Cleeff, L. E. Kivihya-Ndugga, H. Meme, J. A. Odhiambo, and P. R. Klatser, “The 
role and performance of chest X-ray for the diagnosis of tuberculosis: a cost-effectiveness analysis 
in Nairobi, Kenya,” BMC infectious diseases, vol. 5, no. 1, pp. 1-9, 2005. Article (CrossRef Link) 

https://doi.org/10.1016/j.ijid.2021.02.107
https://doi.org/10.1016/S2213-2600(19)30418-7
https://doi.org/10.1016/S0140-6736(00)02742-2
https://doi.org/10.1016/j.tube.2013.03.003
https://doi.org/10.1109/TMI.2013.2290491
https://doi.org/10.18773/austprescr.2010.005
http://dx.doi.org/10.1183/13993003.00364-2017
https://doi.org/10.1186/1471-2334-5-111


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 7, July 2022                                   2149 

[9] S. Candemir, and S. Antani, “A review on lung boundary detection in chest X-rays,” International 
journal of computer assisted radiology and surgery, vol. 14, no. 4, pp. 563-576, 2019.  
Article (CrossRef Link) 

[10] J. Yanase, and E. Triantaphyllou, “A systematic survey of computer-aided diagnosis in medicine: 
Past and present developments,” Expert Systems with Applications, vol. 138, pp. 112821, 2019. 
Article (CrossRef Link) 

[11] J. Dinnes, J. Deeks, H. Kunst, A. Gibson, E. Cummins, N. Waugh, F. Drobniewski, and A. Lalvani, 
“A systematic review of rapid diagnostic tests for the detection of tuberculosis infection,” Health 
Technology Assessment, vol. 11, no. 3, pp. 1-196, 2007. Article (CrossRef Link) 

[12] P. Sun, R. Zhang, Y. Jiang, T. Kong, C. Xu, W. Zhan, M. Tomizuka, L. Li, Z. Yuan, C. Wang, 
and P. Luo, “Sparse r-cnn: End-to-end object detection with learnable proposals,” in Proc. of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14454-14463, 
2021. Article (CrossRef Link) 

[13] S. Jaeger, A. Karargyris, S. Candemir, L. Folio, J. Siegelman, F. Callaghan, Z. Xue, K. Palaniappan, 
R. K. Singh, S. Antani, G. Thoma, Y. Wang, P. Lu, and C. J. McDonald, “Automatic tuberculosis 
screening using chest radiographs,” IEEE transactions on medical imaging, vol. 33, no. 2, pp. 233-
245, 2014. Article (CrossRef Link) 

[14] R. B. Jeyavathana, R. Balasubramanian, and A. Pandian, “An Efficient Feature Extraction Method 
for Tuberculosis detection using Chest Radiographs,” International Journal of Applied 
Environmental Sciences, vol. 12, no. 2, pp. 227-240, 2017. 

[15] K. Satheeshkumar, and A. N. J. Raj, “Developments in computer aided diagnosis used for 
Tuberculosis detection using chest radiography: A survey,” Journal of Engineering and Applied 
Sciences, vol. 11, no. 9, pp. 5530-5539, 2006. 

[16] R. Hooda, S. Sofat, S. Kaur, A. Mittal, and F. Meriaudeau, “Deep-learning: A potential method 
for tuberculosis detection using chest radiography,” in Proc. of 2017 IEEE International 
Conference on Signal and Image Processing Applications (ICSIPA), pp. 497-502, 2017.  
Article (CrossRef Link) 

[17] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 42, no. 2, pp. 386-397, 2020. Article (CrossRef Link) 

[18] S. Gao, M. M. Cheng, K. Zhao, X. Y. Zhang, M. H. Yang, and P. Torr, “Res2net: A new multi-
scale backbone architecture,” IEEE transactions on pattern analysis and machine intelligence, vol. 
43, no. 2, pp. 652-662, 2021. Article (CrossRef Link) 

[19] Z. Cai, and N. Vasconcelos, “Cascade r-cnn: Delving into high quality object detection,” in Proc. 
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6154-6162, 
2018. Article (CrossRef Link) 

[20] R. Girshick, “Fast r-cnn,” in Proc. of the IEEE International Conference on Computer Vision 
(ICCV), pp. 1440-1448, 2015. Article (CrossRef Link) 

[21] E. J. Hwang, S. Park, K. N. Jin, J. I. Kim, S. Y. Choi, and J. H. Lee, “Development and validation 
of a deep learning–based automatic detection algorithm for active pulmonary tuberculosis on chest 
radiographs,” Clinical Infectious Diseases, vol. 69, no. 5, pp. 739-747, 2019.  
Article (CrossRef Link) 

[22] T. Rahman, A. Khandakar, M. A. Kadir, K. R. Islam, K. F. Islam, R. Mazhar, T. Hamid, M. T. 
Islam, S. Kashem, Z. B. Mahbub, M. A. Ayari, and M. E. Chowdhury, “Reliable tuberculosis 
detection using chest X-ray with deep learning, segmentation and visualization,” IEEE Access, vol 
8, pp. 191586-191601, 2020. Article (CrossRef Link) 

[23] M. Ayaz, F. Shaukat, and G. Raja, “Ensemble learning based automatic detection of tuberculosis 
in chest x-ray images using hybrid feature descriptors,” Physical and Engineering Sciences in 
Medicine, vol. 44, no. 1, pp. 183-194, 2021. Article (CrossRef Link) 

[24] S. Jaeger, S. Candemir, S. Antani, Y. X. J. Wáng, P. X. Lu, and G. Thoma, “Two public chest X-
ray datasets for computer-aided screening of pulmonary diseases,” Quantitative imaging in 
medicine and surgery, vol. 4, no. 6, pp. 475-477, 2014. Article (CrossRef Link) 

 
 

https://doi.org/10.1007/s11548-019-01917-1
https://doi.org/10.1016/j.eswa.2019.112821
https://doi.org/10.3310/hta11030
http://dx.doi.org/10.1109/CVPR46437.2021.01422
https://doi.org/10.1109/TMI.2013.2284099
https://doi.org/10.1109/ICSIPA.2017.8120663
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/TPAMI.2019.2938758
https://doi.org/10.1109/CVPR.2018.00644
http://dx.doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1093/cid/ciy967
https://doi.org/10.1109/ACCESS.2020.3031384
https://doi.org/10.1007/s13246-020-00966-0
https://doi.org/10.3978/j.issn.2223-4292.2014.11.20


2150                                                        Xu et al.: A Tuberculosis Detection Method Using Attention and Sparse R-CNN 

[25] A. Chauhan, D. Chauhan, and C. Rout, “Role of gist and PHOG features in computer-aided 
diagnosis of tuberculosis without segmentation,” PloS one, vol. 9, no. 11, pp. e112980, 2014.  
Article (CrossRef Link) 

[26] Y. Liu, Y. H. Wu, Y. Ban, H. Wang, and M. M. Cheng, “Rethinking computer-aided tuberculosis 
diagnosis,” in Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 
(CVPR), pp. 2643-2652, 2020. Article (CrossRef Link) 

[27] H. M. Blumberg, and J. D. Ernst, “The challenge of latent TB infection,” Jama, vol. 316, no. 9, 
pp. 931-933. 2016. Article (CrossRef Link) 

[28] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, and K. Zuiderveld, “Adaptive histogram 
equalization and its variations,” Computer Vision Graphics & Image Processing, vol. 39, no. 3, 
pp. 355-368, 1987. Article (CrossRef Link) 

[29] S. Sajeev, M. Bajger, and G. Lee, “Segmentation of breast masses in local dense background using 
adaptive clip limit-CLAHE,” in Proc. of 2015 International Conference on Digital Image 
Computing: Techniques and Applications (DICTA), pp. 1-8, 2015. Article (CrossRef Link) 

[30] J. C. M. dos Santos, G. A. Carrijo, C. D. F. dos Santos Cardoso, J. C. Ferreira, P. M. Sousa, and 
A. C. Patrocínio, “Fundus image quality enhancement for blood vessel detection via a neural 
network using CLAHE and Wiener filter,” Research on Biomedical Engineering, vol. 36, pp. 107-
119, 2020. Article (CrossRef Link) 

[31] R. M. James, and A. Sunyoto, “Detection Of CT-Scan Lungs COVID-19 Image Using 
Convolutional Neural Network And CLAHE,” in Proc, of 2020 3rd International Conference on 
Information and Communications Technology (ICOIACT), pp. 302-307, 2020.  
Article (CrossRef Link) 

[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document 
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.  
Article (CrossRef Link) 

[33] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, and T. Chen, “Recent advances in 
convolutional neural networks,” Pattern Recognition, vol. 77, pp. 354-377, 2018.  
Article (CrossRef Link) 

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. of 
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016. 
Article (CrossRef Link) 

[35] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional 
networks,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
pp. 4700-4708, 2017. Article (CrossRef Link) 

[36] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” IEEE Transactions on Pattern 
Analysis and Machine Intelligence, vol. 42, no. 8, pp. 2011-2023, 2020. Article (CrossRef Link) 

[37] Q. Li, W. Cai, X. Wang, Y. Zhou, D. D. Feng, and M. Chen, “Medical image classification with 
convolutional neural network,” in Proc. of 2014 13th International Conference on Control 
Automation Robotics & Vision (ICARCV), pp. 844-848, 2014. Article (CrossRef Link) 

[38] W. Rawat, and Z. Wang, “Deep convolutional neural networks for image classification: A 
comprehensive review,” Neural computation, vol. 29, no. 9, pp. 2352-2449, 2017.  
Article (CrossRef Link) 

[39] L. Perez, and J. Wang, “The effectiveness of data augmentation in image classification using deep 
learning,” arXiv preprint arXiv:1712.04621, 2017. Article (CrohssRef Link) 

[40] C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,” in Proc. of 
the 26th International Conference on Neural Information Processing Systems, Vol. 2, pp. 2553-
2561, 2013. Article (CrossRef Link) 

[41] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object detection with deep learning: A review,” IEEE 
transactions on neural networks and learning system, vol. 30, no. 11, pp. 3212-3232, 2019.  
Article (CrossRef Link) 

[42] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: Unified, real-time object 
detection,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 
pp. 779-788, 2016. Article (CrossRef Link) 

https://doi.org/10.1371/journal.pone.0112980
https://doi.org/10.1371/journal.pone.0112980
http://dx.doi.org/10.1109/CVPR42600.2020.00272
https://doi.org/10.1001/jama.2016.11021
https://doi.org/10.1016/S0734-189X(87)80186-X
https://doi.org/10.1109/DICTA.2015.7371305
https://doi.org/10.1007/s42600-020-00046-y
http://dx.doi.org/10.1109/ICOIACT50329.2020.9332069
https://doi.org/10.1109/5.726791
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1109/ICARCV.2014.7064414
https://doi.org/10.1162/neco_a_00990
https://arxiv.org/abs/1712.04621v1
https://dl.acm.org/doi/abs/10.5555/2999792.2999897
https://doi.org/10.1109/TNNLS.2018.2876865
https://doi.org/10.1109/CVPR.2016.91


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 7, July 2022                                   2151 

[43] J. Redmon, and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proc. of the IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), pp. 7263-7271, 2017.  
Article (CrossRef Link) 

[44] J. Redmon, and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint arXiv: 
1804.02767, 2018. Article (CrossRef Link) 

[45] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu, and A.C. Berg, “Ssd: Single shot 
multibox detector,” in Proc. of European Conference on Computer Vision (ECCV), pp. 21-37, 
2016. Article (CrossRef Link) 

[46] T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,” 
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 318-327, 
2020. Article (CrossRef Link) 

[47] M. Tan, and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” 
in Proc. of International Conference on Machine Learning (ICML), pp. 6105-6114, 2019.  
Article (CrossRef Link) 

[48] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with 
region proposal networks,” Advances in neural information processing systems, vol. 28, pp. 91-
99, 2015. Article (CrossRef Link) 

[49] N. Bodla, B. Singh, R. Chellappa, and L.S. Davis, “Soft-NMS--improving object detection with 
one line of code,” in Proc. of the IEEE International Conference on Computer Vision (ICCV), 
pp. 5561-5569, 2017. Article (CrossRef Link) 

[50] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object 
detection with transformers,” in Proc. of European Conference on Computer Vision (ECCV), pp. 
213-229, 2020. Article (CrossRef Link) 

[51] T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks 
for object detection,” in Proc. of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR), pp. 2117-2125, 2017. Article (CrossRef Link) 

[52] J. Ma, W. Shao, H. Ye, L. Wang, H. Wang, Y. Zheng, and X. Xue, “Arbitrary-oriented scene text 
detection via rotation proposals,” IEEE Transactions on Multimedia, vol. 20, no. 11, pp. 3111-
3122, 2018. Article (CrossRef Link) 

[53] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Generalized intersection 
over union: A metric and a loss for bounding box regression,” in Proc. of the IEEE Conference on 
Computer Vision and Pattern Recognition (CVPR), pp. 658-666, 2019.  
Article (CrossRef Link) 

[54] S. Vajda, A. Karargyris, S. Jaeger, K. C. Santosh, S. Candemir, Z. Y. Xue, S Antaniet, and G. 
Thoma, “Feature selection for automatic tuberculosis screening in frontal chest radiographs,” 
Journal of medical systems, vol. 42, no. 8, pp. 1-11, 2018. Article (CrossRef Link) 

[55] F. Pasa, V. Golkov, F. Pfeiffer, D. Cremers, and D. Pfeiffer, “Efficient deep network architectures 
for fast chest X-ray tuberculosis screening and visualization,” Scientific reports, vol. 9, no. 1, pp. 
1-9, 2019. Article (CrossRef Link) 

[56] E. Tasci, C. Uluturk, and A. Ugur, “A voting-based ensemble deep learning method focusing on 
image augmentation and preprocessing variations for tuberculosis detection,” Neural Computing 
and Applications, vol. 33, no. 22, pp. 15541-15555, 2021. Article (CrossRef Link) 

[57] R. Guo, K. Passi, and C. K. Jain, “Tuberculosis diagnostics and localization in chest X-rays via 
deep learning models,” Frontiers in Artificial Intelligence, vol. 3, 2020. Article (CrossRef Link) 

[58] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, 
“Microsoft coco: Common objects in context,” in Proc. of European Conference on Computer 
Vision (ECCV), pp. 740-755, 2014. Article (CrossRef Link) 

 
 
 
 
 
 

https://doi.org/10.1109/CVPR.2017.690
https://arxiv.org/abs/1804.02767v1
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TPAMI.2018.2858826
https://arxiv.org/abs/1905.11946v5
https://arxiv.org/abs/1506.01497v3
https://doi.org/10.1109/ICCV.2017.593
https://arxiv.org/abs/2005.12872v3
https://arxiv.org/abs/1612.03144v2
https://doi.org/10.1109/TMM.2018.2818020
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1007/s10916-018-0991-9
https://doi.org/10.1038/s41598-019-42557-4
https://doi.org/10.1007/s00521-021-06177-2
https://doi.org/10.3389/frai.2020.583427
https://arxiv.org/abs/1405.0312v3


2152                                                        Xu et al.: A Tuberculosis Detection Method Using Attention and Sparse R-CNN 

Xuebin Xu received Ph.D. degree in the department of computer science from Xi'an 
Jiaotong Univeristy, PR China in 2010. He has worked as a research associate professor of 
University of Florida, USA. He is currently as a research scientist of Shaanxi Key Laboratory 
of Network Data Analysis and Intelligent Processing.  His research interests include machine 
learning, bioinformatics, biomedical image processing and information fusion. He has 
published over 100 papers in top international journals and conferences. 
 
 
 

 
Jiada Zhang was born in Chaozhou, China in 1996. He is currently pursuing a master's 
degree in computer technology at Xi 'an University of Posts and Telecommunications. His 
research interests include image recognition and object detection. 
 
 
 
 
 
 

 
Xiaorui Cheng was born in Baoji, China in 1997. She is currently pursuing a master's 
degree in computer Science and technology at Xi 'an University of Posts and 
Telecommunications. Her research interests include medical big data and eeg processing. 
 
 
 
 
 
 

 
Longbin Lu received his ph. D. degree in Control Science and Engineering from Xi 'an 
Jiaotong University in 2018. He is currently a lecturer at the School of Computer Science, Xi 
'an University of Posts and Telecommunications. His research interests include biometric 
recognition and artificial intelligence. 
 
 
 
 
 

 
Yuqing Zhao was born in 1995 in Weinan, China. She is currently pursuing a master's 
degree in computer technology at Xi 'an University of Posts and Telecommunications. Her 
research interests include image recognition and image segmentation. 
 
 
 
 
 
 

 
Zongyu Xu was born in Xi 'an, China in 1997. He is currently pursuing a master's degree 
in computer technology at Xi 'an University of Posts and Telecommunications. His research 
interests include intelligent transportation and deep learning. 
 
 
 
 
 
 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 7, July 2022                                   2153 

Zhuangzhuang Gu was born in Kaifeng, China in 1998. He is currently pursuing a PhD 
in Computer Science at the University of South Carolina. His research interests include 
machine learning and deep learning. 
 


