• Title/Summary/Keyword: Post welding heat treatment(PWHT)

Search Result 63, Processing Time 0.03 seconds

Cr - Mo鋼 熔接 後熱處理材 의 勞破壞 에 關한 硏究

  • 박재규;김석원;김연식
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.16-26
    • /
    • 1985
  • Post weld heat treatment(PWHT), at more than 600.deg. C, is essential to remove residual stress and hydrogen in weld HAZ and improve fatigue characteristics. However, residual stress during PWHT is responsible for PWHT embitterment and it promotes precipitation of impurities to grain boundary. In this paper, the effect of stress simulated residual stress on fatigue failure was evaluated by fatigue test, microhardness test and fractograph. The obtained results are summarized as follows; (1) The fatigue crack growth rate(da/dN) of parent and heat treated parent was affected by microstructure due to heat treatment and it depended on stress intensity factor (.DELTA.k). (2) The fatigue strength of weld HAZ was dependent on applied stress during PWHT and da/dN after PWHT was slower than as-weld. (3) Softening amount of weld HAZ was bigger than any other due to PWHT. Hardness value of weld HAZ was affected by heat treatment under the applied stress of 10 $kgf/mm^2$, but beyond 20 $kgf/mm^2$ it was increased by the applied stress rather than heat treatment. (4) Beyond the applied stress of 20 $kgf/mm^2$ during PWHT, intergranular fracture surface was observed and its amount was increased with applied stress during PWHT. (5) Effect of applied stress during PWHT on aspect of fracture surface was larger rather than that on fatigue crack growth behavior.

  • PDF

A Numerical Analysis Study on the Reheating crack around Welded Joint of Pressure Vessel with 2$\frac {1}{4}$Cr-1Mo Steel (2$\frac {1}{4}$ Cr-1Mo강 압력용기 Nozzle 용접이음부의 재열균열에 관한 수치해석적 연구)

  • 김종명
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.88-94
    • /
    • 2000
  • Recently various pressure vessels like an atomic reactor and plant facilities become more larger and are needed to bear in both very high temperature and pressure condition. And in making such a high pressure vessels the amount of annual usage of 2 $\frac {1}{4}$ Cr-1Mo steels which are predominant to resist high temperature high pressure and corrosive circumstances are increasing. But despite of this advantage of 2 $\frac {1}{4}$Cr-1Mo steel. when PWHT(post welding heat treatment) is carried out lots of reheating cracks are occur. In this reason it is strongly needed to study and examine the mechanical behavior of welded joints through welding to PWHT process. So in this study welded nozzle of pressure vessel where reheat cracks are frequently occur are selected for analysis the crack-occurrence mechanism.

  • PDF

Mechanical Properties of Dissimilar Friction Welded Steel Bars in Relation to Post Weld Heat Treatment (이종 마찰용접 강봉재의 후열처리에 따른 기계적 특성)

  • Kong Yu-Sik;Kim Seon-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.402-408
    • /
    • 2006
  • Dissimilar friction welding were produced using 15(mm) diameter solid bar in chrome molybedenum steel(KS SCM440) to carbon steel(KS S45C) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and H.A.Z and microstructure investigations. The specimens were tested as-welded and post-weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_1=60(MPa),\;P_2=100(MPa),\;t_1=4(s),\;t_2=5(s)$ when the total upset length is 5.4 and 5.7(mm), respectively. The peak of hardness distribution of the friction welded joints can be eliminated by PWHT. Two different kinds of materials are strongly mixed to show a well-combined structure of macro-particles without any molten material and particle growth or any defects.

The influence of post weld heat treatment on mechanical properties of stainless steel weldment (스테인리스강 용접부의 기계적 성질에 미치는 후열처리의 영향)

  • 한종만;한기형;이은배;허만주;한용섭
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.75-85
    • /
    • 1996
  • In this paper the influence of postweld heat treatment on mechanical properties of SMAW and FCAW stainless steel weldments was examined and the obtained results are as follows ; (1) The amount of $\delta$-ferrite formed by SMAW and FCAW process decreased with increasing holding temperature and time in post weld heat treatment(PWHT), and it was found that the reduced ferrite was transformed into sigma phase after $800^{circ}C{\times}50hr$ PWHT. This sigma phase, even though it was very small, resulted in brittleness of dissimilar weldment between carbon steel and stainless steel in bending test, however in similar weldment between stainless steel and stainless steel was not occured. (2) The chemical composition of sigma phase was measured to 28-30%Cr, 7-9%Mo, 4-6Ni in 316L weldment, and also 35-37%Cr, 0.9-1.0Mo, 6-8%Ni in 309L weldment by EDS analysis.

  • PDF

EFFECTS OF AGING TREATMENT ON MICROSTRUCTURE AND STRENGTH OF WELD HEAT AFFECTED ZONE OF 6N01-T5 ALUMINUM ALLOY

  • Yoshida, Naoharu;Shibao, Masami;Ema, Mitsuhiro;Sasabe, Seiji;Hirose, Akio;Kobayashi, Kojiro F.
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.59-64
    • /
    • 2002
  • Effects of the aging treatments on the microstructure and strength of heat affected zone(HAZ) in the welds of a age-hardened Al-Mg-Si alloy, 5N01-T5, were investigated. The base metal aging treatments before MIG welding were conducted at 423K to 473K for 28.8ks Post weld heat treatment(PWHT) to recover the HAZ strength was performed at 448K for 28.8ks. Microstructure observations, hardness measurements and tensile tests were conducted to study properties of the MIG weld joints. The position of the softest region in HAZ where the hardness insufficiently recovered after natural aging and PWHT was at a distance of approximately 15mm from the center of the fusion zone. Hardness of the softest regions after natural aging and PWHT decreased with increase in the base metal aging temperature. TEM observation clarified that strengthening ${\beta}$"(Mg$_2$Si) precipitates and coarse ${\beta}$′ precipitates affected the hardnes of HAZ. Incomplete recover of hardness in HAZ after PWHT was caused by the precipitating of non-hardening ${\beta}$′ phase during the weld thermal cycle. In order to examine the effects of weldheat input and welding speed, the laser weld joints were also investigated and compared with the MIG weld ones. Laser welding had the narrower width of the softened regions in HAZ compared with MIG welding. The hardness of the softest regions of the laser welds after PWHT was higher than that of the MIG welds. Quantitative relations between hardness of the softest region and base metal aging temperature were obtained for both welding processes. Accordingly, the equations to estimate the strength of the weld joints after PWHT with varying base metal temperatures were proposed for MIG welding and laser welding.

  • PDF

Rotary Bending Fatigue Characteristics According to Optimal Friction Welding of SF45 to SM45C Steel Bars (SF45와 SM45C의 마찰용접 최적화에 따른 회전굽힘피로 특성)

  • Kong, Yu Sik;Park, Young Whan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.219-224
    • /
    • 2017
  • A study on dissimilar friction-welded joints was performed for cam shaft applications using solid bar samples, 20mm in diameter, of forging steel(SF45) and carbon steel(SM45C). The main parameters of friction welding such as tensile tests, Vickers hardness surveys of the bond of area, the heat affected zone (HAZ), and the observation of microstructure were investigated to ensure a good quality of friction welding through visual observations. The specimens were tested as-welded and post weld heat treatment(PWHT). This paper deals with optimizing the welding conditions and analyzing various rotary bending fatigue test(RBFT) properties about heat-treated base metal(BM), as-welded and PWHT. Consequently, two materials for friction welding are strongly mixed with a well-combined structure of micro-particles without any molten material, particle growth, or any defect. Moreover, the fatigue limit of BM(SF45) and PWHT for the RBFT were observed as 180MPa and 250MPa, respectively. It was confirmed that the PWHT causes approximately 40% improvement in the fatigue limit when compared to the BM(SF45).

The Mechanical Properties and the Nondestructive Evaluation of Dissimilar Friction Welded Steel Bars (이종마찰용접 강봉재의 기계적특성과 비파괴 평가)

  • Jung, W.T.;Kong, Y.S.;Kim, S.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.77-82
    • /
    • 2006
  • In this study, dissimilar friction welding were produced using 15mm diameter solid bar in chrome molybedenum steel(SCM440) to carbon steel(S45C) to investigate their mechanical properties and the relationship between the weld parameters and the nondestructive coefficients, such as AE counts and ultrasonic attenuation coefficient. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and heat affected zone. The specimens were tested as-welded and post weld heat treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. The ductility of PWHT specimens is higher than as-welded.

  • PDF

A Study on the Post-Weld Heat Treatment Effect Affecting Corrosion Behavior and Mechanical Property of Welding Part of RE36 Steel for Marine Structure (해양구조물용 RE36강 용접부의 부식거동 및 기계적 특성에 미치는 용접후 열처리 효과에 관한 연구)

  • 김성종;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.65-74
    • /
    • 2001
  • A study on the corrosion behavior in case of As-welded and PWHT temperature 55$0^{\circ}C$ of welding part of RE36 steel for marine structure was investigated with parameters such as micro-Vickers hardness, corrosion potential measurement of weld metal(WM), base metal(BM) and heat affected zone(HAZ), both Al anode generating current and Al anode weight loss quantity under sacrificial anode cathodic protection conditions. And also we carried out slow strain rate test(SSRT) in order to research both limiting cathodic polarization potential for hydrogen embrittlement and optimum cathodic protection potential as well as mechanical properties by post-weld heat treatment(PWHT) effect. Hardness of HAZ was the highest among three parts(WM, BM and HAZ) and the highest galvanic corrosion susceptibility was HAZ. And the optimum cathodic polarization potential showing the best mechanical properties by SSRT method was from -770mV to -875mV(SCE). In analysis of SEM fractography, applied cathodic potential from -770mV to -875mV(SCE) it appeared dimple pattern with ductile fracture while it showed transgranular pattern (Q. C : quasicleavage) under -900mV(SCE). However it is suggested that limiting cathodic polarization potential indicating hydrogen embrittlement was under -900mV(SCE).

  • PDF

Optimization of Friction Welding Conditions for Production of Hose Nipple for Marine Transport (해양 수송용 호스니플 제작을 위한 마찰용접 조건의 최적화)

  • Kim, Dong-Gyu;Kim, Yeuk-Ran;Kong, Yu-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.51-56
    • /
    • 2016
  • In this study, for the tube-to-tube friction welding of hose nipple materials, the main parameters of friction welding were investigated using tensile tests, Vickers hardness surveys of the bond area (HAZ), and observations of the microstructure to increase the quality of friction welding based on visual examination. As-welded and post weld heat treated (PWHT) specimens were tested. The optimal welding conditions were found to be n = 1000 rpm, HP = 10 MPa, UP = 15 MPa, HT = 9 s, and UT = 5 s when the metal loss (Mo) was 7.5 mm. Furthermore, the peak of the hardness distribution of the friction welded joints could be eliminated by PWHT. Moreover, the two materials of the friction weld were thoroughly mixed with a well-combined structure of micro-particles, without any molten material, particle growth, or defects.

A Study on Improvement of Fatigue Strength of Electrical Panel Weldments in Naval Vessels by Post Weld Treatment (함정용 배전반 용접부의 용접후처리 방법에 의한 피로강도 증대 효과에 관한 연구)

  • Kim, Myung-Hyun;Kang, Min-Su;Kang, Sung-Won
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.55-60
    • /
    • 2008
  • Structural reliability of electrical panels installed in naval vessels is of critical importance from structural performance viewpoint. The panels may be exposed to vibration and fatigue loadings from internal and external sources and wave loading which cause fatigue cracking. In this study, common methods such as burr grinding and post weld heat treatment (PWHT), for the fatigue strength improvement of weldments are investigated. Burr grinding is carried out using a electric grinder in order to remove surface defects and improve the weld bead profile. And also PWHT is carried out for the purpose of removing residual. The effectiveness of the two post treatment methods is evaluated in terms of fatigue strength improvement of welded structures.