• Title/Summary/Keyword: Post Cleaning

Search Result 148, Processing Time 0.024 seconds

Surface Characteristics of PZT-CMP by Post-CMP Process (PZT-CMP 공정시 후처리 공정에 따른 표면 특성)

  • Jun, Young-Kil;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.103-104
    • /
    • 2006
  • $Pb(Zr,Ti)O_3(PZT)$ is very attractive ferroelectric materials for ferroelectric random access memory (FeRAM) applications because of its high polarization ability and low process temperature. However, Chemical Mechanical Polishing (CMP) pressure and velocity must be carefully adjusted because FeRAM shrinks to high density devices. The contaminations such as slurry residues due to the absence of the exclusive cleaning chemicals are enough to influence on the degradation of PZT thin film capacitors. The surface characteristics of PZT thin film were investigated by the change of process parameters and the cleaning process. Both the low CMP pressure and the cleaning process must be employed, even if the removal rate and the yield were decreased, to reduce the fatigue of PZT thin film capacitors fabricated by damascene process. Like this, fatigue characteristics were partially controlled by the regulation of the CMP process parameters in PZT damascene process. And the exclusive cleaning chemicals for PZT thin films were developed in this work.

  • PDF

The effect of buffing on particle removal in Post-Cu CMP cleaning (Post-Cu CMP cleaning에서 연마입자 제거에 buffing 공정이 미치는 영향)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.537-537
    • /
    • 2008
  • Copper (Cu) has been widely used for interconnection structure in intergrated circuits because of its properties such as a low resistance and high resistance to electromigration compared with aluminuim. Damascene processing for the interconnection structure utilizes 2-steps chemical mechanical polishing(CMP). After polishing, the removal of abrasive particles on the surfaces becomes as important as the polishing process. In the paper, buffing process for the removal of colloidal silica from polished Cu wafer was proposed and demonstrated.

  • PDF

Gallnut Mordanting on Silk Fabric Dyed with Onion Shell (견직물의 양파외피 염색 시 오배자의 매염 효과)

  • Park, Ah-Young;Song, Wha-Soon;Kim, In-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.3
    • /
    • pp.393-400
    • /
    • 2010
  • This study examines the mordanting effect and multi functional properties of silk fabrics dyed with onion shell extracts that were mordanted with gallnut. The contents of this study are as follows. First, the optimum dyeing conditions were investigated by measuring the K/S value that depended the on dyeing conditions when silk fabrics were dyed with onion shell extracts. Second, the color, brightness, and chroma differences that appear after mordanting with gallnut were investigated by measuring the K/S and Munsell value. Third, the color fastness and antimicrobial activity were measured. When silk fabrics were dyed with onion shell extracts, the optimum dyeing conditions were a dyeing temperature of $70^{\circ}C$, a dyeing concentration of 160%, and a dyeing of time 30min. After mordanting with gallnut extracts, the K/S value increased remarkably and was larger in pre-mordanting than post-mordanting. The H value displayed yellow-red in all cases of pre and post mordanting. However, the H value was more reddish in the order of non-mordanting

Effect of Oenothera odorata jacquin Dye and Mordants on Chitosan Fiber (키토산 부직포의 달맞이꽃을 이용한 염색성 및 매염효과)

  • Seo, Hye-Young;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.35 no.1
    • /
    • pp.115-124
    • /
    • 2011
  • This study provides an eco-friendly dyeing processing for chitosan fiber using Oenothera odorata jacquin as a dye. The effects of chemical mordants (Al, Cu, Fe) and natural mordant (Chestnut shell) on the color change for dyed chitosan fibers were measured by K/S values, L, $a^*$, $b^*$, H, V, C values, color fastness, and antimicrobial activity. The results are as follows. Dyeing conditions of Oenothera odorata jacquin on chitosan fibers were optimized to $70^{\circ}C$, 30 minutes and 200% on weight of fabric (o.w.f.). The pre-mordant concentration of aluminium (Al), copper (Cu) and iron (Fe) of chitosan fibers was optimized to 3% (o.w.f.) and 1% (o.w.f.), respectively. The post-mordant concentration of chemicals, such as Al, Cu and Fe, on chitosan was determined to 1% (o.w.f.). The hue of chitosan fibers by chemical mordants was measured to be reddish & yellow. The pre-mordant concentration of Chestnut shell of chitosan was optimized to 70% (o.w.f.). The post-mordant concentration of Chestnut shell on chitosan was determined to be 50% (o.w.f.). The hue of chitosan fibers by Chestnut shell mordant was measured to be reddish & yellow. The wet cleaning fastness of chitosan fibers was improved by a pre-mordant that used chemical mordants. In the case of the Chestnut shell mordant, the wet cleaning fastness was improved by a post-mordant. The dry cleaning fastness of chitosan fibers was excellent regardless of mordants and mordant methods. The antimicrobial activity of the chitosan fiber was shown at 99.9% and its excellent qualities remained after the dyeing and mordant processing.

Post Ru CMP Cleaning for Alumina Particle Removal

  • Prasad, Y. Nagendra;Kwon, Tae-Young;Kim, In-Kwon;Park, Jin-Goo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.34.2-34.2
    • /
    • 2011
  • The demand for Ru has been increasing in the electronic, chemical and semiconductor industry. Chemical mechanical planarization (CMP) is one of the fabrication processes for electrode formation and barrier layer removal. The abrasive particles can be easily contaminated on the top surface during the CMP process. This can induce adverse effects on subsequent patterning and film deposition processes. In this study, a post Ru CMP cleaning solution was formulated by using sodium periodate as an etchant and citric acid to modify the zeta potential of alumina particles and Ru surfaces. Ru film (150 nm thickness) was deposited on tetraethylorthosilicate (TEOS) films by the atomic layer deposition method. Ru wafers were cut into $2.0{\times}2.0$ cm pieces for the surface analysis and used for estimating PRE. A laser zeta potential analyzer (LEZA-600, Otsuka Electronics Co., Japan) was used to obtain the zeta potentials of alumina particles and the Ru surface. A contact angle analyzer (Phoenix 300, SEO, Korea) was used to measure the contact angle of the Ru surface. The adhesion force between an alumina particle and Ru wafer surface was measured by an atomic force microscope (AFM, XE-100, Park Systems, Korea). In a solution with citric acid, the zeta potential of the alumina surface was changed to a negative value due to the adsorption of negative citrate ions. However, the hydrous Ru oxide, which has positive surface charge, could be formed on Ru surface in citric acid solution at pH 6 and 8. At pH 6 and 8, relatively low particle removal efficiency was observed in citric acid solution due to the attractive force between the Ru surface and particles. At pH 10, the lowest adhesion force and highest cleaning efficiency were measured due to the repulsive force between the contaminated alumina particle and the Ru surface. The highest PRE was achieved in citric acid solution with NaIO4 below 0.01 M at pH 10.

  • PDF

The Effect of Gallnut Mordanting on Gromwell Dyed Silk Fabric (견직물 자초 염색 시 오배자의 매염 효과)

  • Park, Ah-Young;Kim, In-Young;Song, Wha-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.2
    • /
    • pp.256-265
    • /
    • 2009
  • The purpose of this study is to check color change, color fastness, increase wt., antibiosis, and UV-protection efficiency depending on gallnut concentrations and mordanting methods, when silk fabrics dye with gromwell according to pH. This results will contribute in developing of natural mordant with multi function. The results are as follows. ${\lambda}_{max}$ of Gallnut extracts was near 299 nm. When gallnut was used as a mordant, at all pH levels, pre-mordanted fabrics had red color and post-mordanted ones had red-purple color which was closed to natural color of gromwell. Brightness of post-mordanted fabrics was higher than that of pre-mordanted fabrics. In the case of chroma, pre-mordanted fabrics was higher than post-mordanted fabrics. There was no significant difference of color, brightness, and chroma depending on gallnut concentration. As mordanting concentration increased, fabric weight gradually went up and increase weight reached maximum $17{\sim}19%$. At all pH levels, color fastness improved by pre-mordanting and post-mordanting, and it showed the maximum $4{\sim}5$ grade of wet fastness and 5 grade of dry cleaning. Antibiosis of silk fabric was improved by gromwell dyeing and synthetic tannin mordanting. Antibiosis of gallnut extracts was excellent. The color fastness and antibiosis were preserved after 10 cycle dry cleaning. UV-protection efficiency was excellent by dyeing with gromwell and mordanting with gallnut.

Catechins Content and Color Values of Silk Fabrics Dyed with Korean Green Tea Extracts (녹차 염색 견포의 카테킨 함량 및 색상변화)

  • Son, Ji-Hyon;Lee, Myung-Sun;Chun, Tae-Il
    • Textile Coloration and Finishing
    • /
    • v.18 no.1
    • /
    • pp.10-19
    • /
    • 2006
  • Despite several recent attempts to measure the concentration of individual catechins by HPLC, it has not been so easy to separate catechins accurately. The aim of the present work is to provide a proper condition for separating each component of catechins by HPLC analysis, and also to evaluate the experimental variables including color differences, and metal ion contents after dyeing and mordanting. Four kinds of Catechins, (-)-epicatechin(EC), (-)-epicatechin gallate(ECG), (-)-epigallocatechin(EgC), (-)-epigallocatechin gllate(EgCG) were isolated from the residues after dyeing. Catechins in Korean green tea leaves are richer when e tea leaves are younger. Higher concentration of catechins owes it to e way it is processed. The contents of catechins adsorbed in silk fabrics after dyeing were in order of EGCG>ECG>EGC>EC. We have found $68\%$ uptake of EGCG, and 116.8mg of EGCG in the silk fabrics after it was dyed with $1\%$ Korean green tea extracts. The absorbance intensity and K/S values of dyed silk fabrics were increased with dyeing temperature and time. Only the surface color of the silk fabric dyed with green tea extracts was yellowish red, but it changed from yellowish red to red with an increase in the mordant concentration. Post-mordanted silk fabrics with ferrous sulfate changed from yellowish red to red and purple color shade. In a practical evaluation, there is no significant change in color after twenty times of the continuous dry cleaning process. However, post-mordanted fabrics with ferrous sulfate faded the brightness of color after dry cleaning. Dyeing silk fabrics with a Korean tea extract reduced the metal ion contents in the silk fabrics when compared to the untreated silk fabrics. Metal contents in silk fabrics dyed and post-mordanted with $1\%$ each metal solution were 0.194 ppm for Aluminum, 1.601ppm for Copper, and 0.334 ppm for Iron. After the post-mordanting process, the heavy metal ion absorption increased, which was mainly attributed to the catechins and polyphenols in dyed silk fabrics.

Combination Dyeing of Silk Fabrics with Dansam and Sappan Wood (단삼과 소목을 이용한 견직물의 복합염색)

  • Nam, Jeongran;Lee, Jeongsook
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.314-326
    • /
    • 2013
  • The purpose of this research is to analyze the effects of Dansam and Sappan wood extract to perform combination dyeing on silk fabrics, with respect to color changes, fastness (washing, dry cleaning, perspiration, rubbing and light fastness), and functionality (antibacterial activity and deodorization). Combination dyeing was performed by first combining Dansam with Sappan wood, then Sappan wood with Dansam, in these orders. Given the changes in the combination ratio, pre-mordant treatment was performed. Looking at the surface colors of each dye, Dansam generally produces YR color series, while Sappan wood produces YR, R, and RP color series. The effects of changing the order in which combination dying was performed on the surface colors were as follows. First, combination dyeing (A) was performed by using Dansam before Sappan wood, to produce YR and R color series. Then combination dyeing (B) was performed by using Sappan wood before Dansam, to produce YR, R, and RP color series. By visual inspections, more similar color changes of the combination dyeing were noticed with the post-dyeing material rather than the pre-dyeing material. Therefore, it was presumably confirmed that surface color changes of combination dyeing were greatly influenced by the post-dyeing color. Individual dyeing tests for fastness showed that Dansam was comparatively superior to Sappan wood, which demonstrated lower fastness to washing, dry cleaning, perspiration, and light, relatively. The fastness of combination dyed samples was shown middle, but similar fastness to the post-dye material, The fastness of (B) method was higher than (A) method in the washing and light fastness. This confirms that color fastness from combination dyeing was considerably influenced by the post-dye material. It was found that all dyed samples had a very high bacterial reduction rate of 99.9% and high deodorization rate of 95%.