• Title/Summary/Keyword: Positioning service

Search Result 565, Processing Time 0.029 seconds

Positioning of Wireless Base Station using Location-Based RSRP Measurement

  • Cho, Seong Yun;Kang, Chang Ho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.183-192
    • /
    • 2019
  • In fingerprint-based wireless positioning, it is necessary to establish a DB of the unmeasured area. To this end, a method of estimating the position of a base station based on a signal propagation model, and a method of estimating the information of the received signal in the unmeasured area based on the estimated position of the base station have been investigating. The purpose of this paper is to estimate the position of the base station using the measured information and to analyze the performance of the positioning. Vehicles equipped with a GPS receiver and signal measuring equipment travel the service area and acquire location-based Reference Signal Received Power (RSRP) measurements. We propose a method of estimating the position of the base station using the measured information. And the performance of the proposed method is analyzed on a simulation basis. The simulation results confirm that the accuracy of the positioning is affected by the measured area and the Dilution of Precision (DOP), the accuracy of the position information obtained by the GPS receiver, and the errors of the signal included in the RSRP. Based on the results of this paper, we can expect that the position of the base station can be estimated and the DB of the unmeasured area can be constructed based on the estimated position of the base stations and the signal propagation model.

Lane-Level Positioning based on 3D Tracking Path of Traffic Signs (교통 표지판의 3차원 추적 경로를 이용한 자동차의 주행 차로 추정)

  • Park, Soon-Yong;Kim, Sung-ju
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.172-182
    • /
    • 2016
  • Lane-level vehicle positioning is an important task for enhancing the accuracy of in-vehicle navigation systems and the safety of autonomous vehicles. GPS (Global Positioning System) and DGPS (Differential GPS) are generally used in navigation service systems, which however only provide an accuracy level up to 2~3 m. In this paper, we propose a 3D vision based lane-level positioning technique which can provides accurate vehicle position. The proposed method determines the current driving lane of a vehicle by tracking the 3D position of traffic signs which stand at the side of the road. Using a stereo camera, the 3D tracking paths of traffic signs are computed and their projections to the 2D road plane are used to determine the distance from the vehicle to the signs. Several experiments are performed to analyze the feasibility of the proposed method in many real roads. According to the experimental results, the proposed method can achieve 90.9% accuracy in lane-level positioning.

Channelwise Multipath Detection for General GPS Receivers (일반적인 GPS 수신기를 위한 채널별 다중경로오차 검출 기법)

  • Lee, Hyung-Keun;Lee, Jang-Gyu;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.9
    • /
    • pp.818-826
    • /
    • 2002
  • Since multipath phenomenon frequently occurs when a Global Positioning System receiver is placed in urban area crowded with large buildings, efficient mitigation of multipath effects is necessary to resolve. In this paper, we propose a new multipath detection technique that is useful in real-time positioning with a general Global Positioning System receiver. The proposed technique is based on a channelwise multipath test statistic that efficiently indicates the degree of fluctuations induced by multipath error. The proposed multipath test statistic is operationally advantageous because it does not require any specialized hardware nor any pre-computation of receiver position, it is directly related to standard $\chi$$^2$-distributions, and it can adjust the detection resolution by increasing the number of successive measurements. Simulation and experiment results verify the performance of the proposed multipath detection technique.

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

Location Positioning System Based on K-NN for Sensor Networks (센서네트워크를 위한 K-NN 기반의 위치 추정 시스템)

  • Kim, Byoung-Kug;Hong, Won-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1112-1125
    • /
    • 2012
  • To realize LBS (Location Based Service), typically GPS is mostly used. However, this system can be only used in out-sides. Furthermore, the use of the GPS in sensor networks is not efficient due to the low power consumption. Hence, we propose methods for the location positioning which is runnable at indoor in this paper. The proposed methods elaborate the location positioning system via applying K-NN(K-Nearest Neighbour) Algorithm with its intermediate values based on IEEE 802.15.4 technology; which is mostly used for the sensor networks. Logically the accuracy of the location positioning is proportional to the number of sampling sensor nodes' RSS according to the K-NN. By the way, numerous sampling uses a lot of sensor networks' resources. In order to reduce the number of samplings, we, instead, attempt to use the intermediate values of K-NN's signal boundaries, so that our proposed methods are able to positioning almost two times as accurate as the general ways of K-NN's result.

A Study on Error Reduction of Indoor Location Determination using triangulation Method and Least Square Method (삼각측량법과 최소자승법을 활용한 실내 위치 결정의 산포 감소 방안에 관한 연구)

  • Jang, Jung-Hwan;Lee, Doo-Yong;Zhang, Jing-Lun;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.217-224
    • /
    • 2012
  • Location-Based Services(LBS) is a service that provide location information by using communication network or satellite signal. In order to provide LBS precisely and efficiently, we studied how we can reduce the error on location determination of objects such people and things. We focus on using the least square method and triangulation positioning method to improves the accuracy of the existing location determination method. Above two methods is useful if the distance between the AP and the tags can be find. Though there are a variety of ways to find the distance between the AP and tags, least squares and triangulation positioning method are wildely used. In this thesis, positioning method is composed of preprocessing and calculation of location coordinate and detail of methodology in each stage is explained. The distance between tag and AP is adjusted in the preprocessing stage then we utilize least square method and triangulation positioning method to calculate tag coordinate. In order to confirm the performance of suggested method, we developed the test program for location determination with Labview2010. According to test result, triangulation positioning method showed up loss error than least square method by 38% and also error reduction was obtained through adjustment process and filtering process. It is necessary to study how to reduce error by using additional filtering method and sensor addition in the future and also how to improve the accuracy of location determination at the boundary location between indoor and outdoor and mobile tag.

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
    • Structural Engineering and Mechanics
    • /
    • v.89 no.6
    • /
    • pp.589-599
    • /
    • 2024
  • This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.

A Study on Influence Factors of Telematics Services Acceptance in a Domestic Market (텔레매틱스 서비스 수용의도에 미치는 영향요인에 관한 연구)

  • Jang, Se-Ho;Yang, Hae-Sool
    • Journal of Digital Convergence
    • /
    • v.12 no.9
    • /
    • pp.177-192
    • /
    • 2014
  • Telematics is a compound word derived from telecommunication and informatics, which provides wireless data service such as traffic information, living information, remote control, maintenance and etc. in a vehicle using GPS(Global Positioning System) and telecommunication. Telematics acceptance was investigated to analyze characteristics of telematics service and its market by using a theoretical technology acceptance model based on literature review. In this paper, valid factors, influencing telematics service acceptance, have been drawn in terms of user ease-of-use, usefulness and service characteristics. Modified measuring variables were used by referring to previous researches.

A Study on Youth Ethics Education Using Location-Based Services of Smartphone (스마트폰 위치기반서비스를 이용한 청소년 윤리교육에 관한 연구)

  • Ryu, Chang-Su;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1805-1810
    • /
    • 2012
  • As mobile devices have rapidly spread to consumers, services with location information have been developed. The service that they provide related information by positioning automatically is referred to as 'Location-Based Service'. This paper suggests the ways that users instruct the students proper ethics in advance, after saving their moving course and offensive businesses in database, with 'Location-Based Service', by positioning their movements, especially the degree of breaking away from their course and the cases of their access to an offensive business and their stay in crime-prone areas, and comparing them to those in the database.

Precision Assessment of Near Real Time Precise Orbit Determination for Low Earth Orbiter

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.55-62
    • /
    • 2011
  • The precise orbit determination (POD) of low earth orbiter (LEO) has complied with its required positioning accuracy by the double-differencing of observations between International GNSS Service (IGS) and LEO to eliminate the common clock error of the global positioning system (GPS) satellites and receiver. Using this method, we also have achieved the 1 m positioning accuracy of Korea Multi-Purpose Satellite (KOMPSAT)-2. However double-differencing POD has huge load of processing the global network of lots of ground stations because LEO turns around the Earth with rapid velocity. And both the centimeter accuracy and the near real time (NRT) processing have been needed in the LEO POD applications--atmospheric sounding or urgent image processing--as well as the surveying. An alternative to differential GPS for high accuracy NRT POD is precise point positioning (PPP) to use measurements from one satellite receiver only, to replace the broadcast navigation message with precise post processed values from IGS, and to have phase measurements of dual frequency GPS receiver. PPP can obtain positioning accuracy comparable to that of differential positioning. KOMPSAT-5 has a precise dual frequency GPS flight receiver (integrated GPS and occultation receiver, IGOR) to satisfy the accuracy requirements of 20 cm positioning accuracy for highly precise synthetic aperture radar image processing and to collect GPS radio occultation measurements for atmospheric sounding. In this paper we obtained about 3-5 cm positioning accuracies using the real GPS data of the Gravity Recover and Climate Experiment (GRACE) satellites loaded the Blackjack receiver, a predecessor of IGOR. And it is important to reduce the latency of orbit determination processing in the NRT POD. This latency is determined as the volume of GPS measurements. Thus changing the sampling intervals, we show their latency to able to reduce without the precision degradation as the assessment of their precision.