• 제목/요약/키워드: Positioning precision

검색결과 816건 처리시간 0.03초

고속 HMC 이송계의 운동 특성 평가 (Performance Assessment of Linear Motor for High Speed Machining Center)

  • 홍원표;강은구;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.158-161
    • /
    • 2003
  • Recently, the evolution in production techniques (e.g. high-speed milling), the complex shapes involved in modem production design, and the ever increasing pressure for higher productivity demand a drastic improvement of the dynamic behavior of the machine tool axes used in production machinery. And also machine tools of multi functional and minimized parts are increasingly required as demand of higher accurate in some fields such as electronic and optical components etc. The accuracy and the productivity of machined parts are natural to depend on the linear system of machine tools. The complex workpiece surfaces encountered in present-day products and generated by CAD systems are to be transformed into tool paths for machine tools. The more complex these tool paths and the higher the speed requirements, the higher the acceleration requirements are needed to the machine tool axes and the motion control system, and the more difficult it is to meet the requirements. The traditional indirect drive design for high speed machine tools, which consists of a rotary motor with a ball-screw transmission to the slide, is limited in speed, acceleration, and accuracy. The direct drive design of machine tool axes. which is based on linear motors and which recently appeared on the market. is a viable candidate to meet the ever increasing demands, because of these advantages such as no backlash, less friction, no mechanical limitations on acceleration and velocity and mechanical simplicity. Therefore performance tests were carried out to machine tool axes based on linear motor. Especially, dynamic characteristics were investigated through circular test.

  • PDF

기계장비 제어특성 시뮬레이션 플랫폼 기술 (Accuracy Simulation Technology for Machine Control Systems)

  • 송창규;김병섭;노승국;이성철;민병권;정영훈
    • 한국정밀공학회지
    • /
    • 제28권3호
    • /
    • pp.292-300
    • /
    • 2011
  • Control systems in machinery equipment provide correction signals to motion units in order to reduce or cancel out the mismatches between sensor feedback signals and command or desired values. In this paper, we introduce a simulator for control characteristics of machinery equipment. The purpose of the simulator development is to provide mechanical system designers with the ability to estimate how much dynamic performance can be achieved from their design parameters and selected devices at the designing phase. The simulator has a database for commercial parts, so that the designers can choose appropriate components for servo controllers, motors, motor drives, and guide ways, etc. and then tune governing parameters such as controller gains and friction coefficients. The simulator simulates the closed-loop control system which is built and parameter-tuned by the designer and shows dynamic responses of the control system. The simulator treats the moving table as a 6 degrees-of-freedom rigid body and considers the motion guide blocks stiffness, damping and their locations as well as sensor locations. The simulator has been under development for one and a half years and has a few years to go before the public release. The primary achievements and features will be presented in this paper.

긴뼈의 형상 평균화 기법 (The Geometric Averaging Technique for Long Bone)

  • 곽대순;이우영;한승호;최광남;김태중
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.177-178
    • /
    • 2006
  • Many authors issued the feature-preserving averaging technique according to positioning and scaling process using landmarks, which represent the geometric characteristics of three dimensional surface models. Such a technique should be done by manual procedure, choosing and marking the landmarks on each bone surface before averaging process. In this study, we produced another averaging technique without having to use such manual procedure, and made averaging models from three dimensional surface data that were reconstructed from computerized tomography images of Digital Korean Project. The bone models were subjected to orthogonal coordinator system. These models were transformed to coincide mass center and to align principal axis. Then, bone models were scaled according to average length data of sample bone models on all axis(x, y, z). After establishing voxellar hexahedron space which contain all sample bone models, we counted the number of overlapping for each voxel. We generated the three dimensional average surface by displaying the yokels that have more overlapping number than boundary number. The boundary number was decided when the average volume of each bone equal to the volume of bone that would be averaged. Using this technique, we can make a feature-preserving averaging volume of bones.

  • PDF

생분해성 고분자 용착을 위한 기반 공정 개발과 이를 이용한 수술 후 유착 방지막의 제작 (Fundamental Process Development for Bio-degradable Polymer Deposition and Fabrication of Post Surgical Anti-adhesion Barrier Using the Process)

  • 박석희;김효찬;김택경;정현정;박태관;양동열
    • 한국정밀공학회지
    • /
    • 제24권4호
    • /
    • pp.138-146
    • /
    • 2007
  • Some biodegradable polymers and other materials such as hydrogels have shown the promising potential for surgical applications. Post surgical adhesion caused by the natural consequence of surgical wound healing results in repeated surgery and harmful effects. Recently, scientists have developed absorbable anti-adhesion barriers that can protect a tissue from adhesion in case they are in use; however, they are dissolved when no longer needed. Although these approaches have been attempted to fulfill the criteria for adhesion prevention, none can perfectly prevent adhesions in all situations. Overall, we developed a new method to fabricate an anti-adhesion membrane using biodegradable polymer and hydrogel. It employed a highly accurate three-dimensional positioning system with pressure-controlled syringe to deposit biopolymer solution. The pressure-activated microsyringe was equipped with fine-bore nozzles of various inner-diameters. This process allowed that inner and outer shapes could be controlled arbitrarily when it was applied to a surgical region with arbitrary shapes. In order to fulfill the properties of the ideal barriers f3r preventing postoperative adhesion, we adopted the pre-mentioned method combined with surface modification with the hydrogel coating by which anti-adhesion property was improved.

회전구동 정전형 마이크로 액추에이터를 이용한 고트랙밀도 HDD용 이단 구동 시스템 (Dual Stage Actuator System for High Density Magnetic Disk Drives Using a Rotary-type Electrostatic Microatuator)

  • 정성환;최재준;박지황;이창호;김철순;민동기;김영훈;이승희;전종업
    • 한국정밀공학회지
    • /
    • 제22권10호
    • /
    • pp.174-185
    • /
    • 2005
  • This paper presents the design, fabrication, and testing results of a dual stage actuator system for a fine positioning of magnetic heads in magnetic disk drives. A novel rotary microactuator which is electrostatically driven and utilized as a secondary actuator was designed. The stator and rotor electrodes in the microactuator was revised to have the optimal shapes and hence produces much higher rotational torque compared with the conventional comb-shape electrodes. The microactuators were successfully fabricated using SoG(silicon on glass) processing technology, which is known as being cost-effective. The fabricated microactuator has the structural thickness of $45{\mu}m$ with the gap width of approximately $3{\mu}m$. The dynamic characteristic of microactuator/slider assembly was investigated, and its natural frequency and DC gain were measured to be 3.4kHz and 32nm/V, respectively. The microactuator/slider assembly was integrated into a HDD model V10 of Samsung Electronics Co. and a dual servo algorithm was tested to explore the tracking performance of dual stage actuator system where the LDV signals instead of magnetic head signals were used. Experimental results indicate that this system achieves the tracking accuracy of 30nm. This value corresponds to a track density of 85,000 track per inch(TPI), which is about 3 times greater than that of current hard disk drives.

도심지역에서의 연도별 다중위성항법 통합성능 예측 (Annual Prediction of Multi-GNSS Navigation Performance in Urban Canyon)

  • 석효정;박병운
    • 한국측량학회지
    • /
    • 제34권1호
    • /
    • pp.71-78
    • /
    • 2016
  • 본 논문에서는 2015년을 기준으로 GPS(Global Positioning System) 단독측위 및 통합항법 성능 현황을 분석하고, 2020년까지의 항법성능을 연도별로 예측하였다. 이러한 예측을 위하여 한반도 지역에서 관측할 수 있는 위성항법시스템의 궤도요소 및 궤도정보 설계 값을 이용하여 Matlab을 기반으로 DOP(Dilution Of Precision)관점에서 성능을 예측하였다. 통합항법의 경우, 항법시스템 간의 시계오차 추정을 위해 시각오프셋 결정 알고리즘을 고려해야 하는데, 위성항법 메시지 기반 추정방식과 사용자가 직접 추정하는 두 가지 방법으로 나누어 분석하였다. 또한 현실감 있는 시뮬레이션 수행을 위하여 3차원 지도정보를 사용하였다. 본 시뮬레이션결과는 도심지역에서의 항법성능을 예측할 수 있는 지표로 활용될 것이라 기대된다.

TDOA 기반 위치탐지를 위한 DOP을 이용한 시각동기화 주수신기 선택 기법 (Method of Master Receiver Selection Using DOP for Time Synchronization in TDOA-Based Localization)

  • 김산해;송규하;곽현규
    • 한국통신학회논문지
    • /
    • 제41권9호
    • /
    • pp.1069-1080
    • /
    • 2016
  • 수동형 감시시스템과 같은 TDOA(Time Difference Of Arrival) 기반의 위치탐지시스템은 다수의 수신기를 이격 설치 후에 수신기 간 시각동기화를 수행하여 동일한 시각으로 설정하고, 수신기에 수신되는 목표 신호의 도래시간차인 TDOA를 이용하여 쌍곡선(또는 쌍곡면)의 교점을 구함으로써 목표의 2차원(또는 3차원) 위치를 추정한다. 시각동기화를 수행하기 위해서는 다수의 수신기 중에 하나가 주수신기(Master)가 되어 나머지 종수신기(Slave)들의 시간을 보정하기 위한 기준을 제공해야 한다. TDOA 기반의 위치탐지 시스템은 서로 이격되어 배치되어 있는 다수의 수신기 중에 선택되는 주수신기에 따라 위치추정정확도가 달라진다. 따라서 다수의 수신기 중에 최적의 수신기를 주수신기로 선택해야 고려하는 시스템의 배치구조에서 최적의 위치추정 성능을 도출할 수 있다. 본 논문에서는 목표와 수신기의 기하학적 배치 기반의 DOP(Dilution Of Precision) 정보를 이용하여 낮은 복잡도와 짧은 수행시간을 가지면서 시스템 내에 자동화가 용이한 주수신기 선택 방법을 제안한다.

영상 지원 척추 융합 수술 로봇 시스템의 개발 (Development of An Image-Guided Robotic Surgery System for Spinal Fusion)

  • 정구봉;이수강;김성민;오세민;이병주;김영수;박종일;오성훈;김희국
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.144-148
    • /
    • 2005
  • The goal of this work is to develop and test a robot-assisted surgery system for spinal fusion. The system is composed of a robot, a surgical planning system, and a navigation system. It plays the role of assisting surgeons for inserting a pedicle screw in the spinal fusion procedure. Compared to conventional methods fer spinal fusion, the proposed surgical procedure ensures minimum invasion and better accuracy by using robot and image information. The robot plays the role of positioning and guiding needles, drills, and other surgical instruments or conducts automatic boring and screwing. Pre-operative CT images and intra-operative fluoroscopic images are integrated to provide the surgeon with information for surgical planning. Several experiments employing the developed robotic surgery system are conducted. The experimental results confirmed that the system is not only able to guide the surgical tools by accurately pointing and orienting the specified location, but also successfully compensate the movement of the patient due to his/her respiration.

  • PDF

Cutting simulation을 이용한 End-milling cutter의 모델링 및 제작에 관한 연구 (End-mill Modeling and Manufacturing Methodology via Cutting simulation)

  • 김재현;박수정;김종한;박정환;고태조;김희술
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.456-463
    • /
    • 2005
  • This paper describes a design process of end-milling cutters: solid model of the designed cutter is constructed along with computation of cutter geometry, and the wheel geometry as well as wheel positioning data fur fabricating end-mills with required cutter geometry is calculated. In the process, the main idea is to use the cutting simulation method by which the machined shape of an end-milling cutter is obtained via Boolean operation between a given grinding wheel and a cylindrical workpiece (raw stock). Major design parameters of a cutter such as rake angle, inner radius can be verified by interrogating the section profile of its solid model. We studied relations between various dimensional parameters and proposed an iterative approach to obtain the required geometry of a grinding wheel and the CL data fer machining an end-milling cutter satisfying the design parameters. This research has been implemented on a commercial CAD system by use of the API function programming, and is currently used by a tool maker in Korea. It can eliminate producing a physical prototype during the design stage, and it can be used fur virtual cutting test and analysis as well.

  • PDF

스포트 및 아크 용접 겸용 로보트 시스템의 개발 (On the Development of Spot and ARC Welding Dual-Purpose Robot System)

  • 유범상;이용중;이양범
    • 한국정밀공학회지
    • /
    • 제12권6호
    • /
    • pp.13-19
    • /
    • 1995
  • A dual purpose robot automation system is developed for both arc welding and spot welding by one robot within a cell. The need for automation of both arc welding and spot welding processes is urgent while the production volume is not so big as to accommodate separate stations for the two processes. Also, space is too narrow for separate stations to be settled down in the factory. A spot welding robot is chosen and the functions for arc welding are implemented in-house at cost of advanced functions. For the spot welding, a single pole type gun is used and the robot has to push down the plate to be wolded, which causes the robot positioning error. Therefore, position error compensation algorithm is developed. The basic functions for the arc welding processes are implemented using the digital I/O board of robot controller, PLC, and A/D conversion PCB. The weaving pattern is taught in meticulously by manual teach. A fixture unit is also developed for dual purpose. The main aspects of the system is presented in this paper especially in the design and implementation procedure. The signal diagrams and sequence logic diagrams are also included. The outcome of the dual purpose welding cell is the increased productivity and good production stability which is indispensable for production volume prediction. Also, it leads to reduction of manufacturing lead time.

  • PDF