• 제목/요약/키워드: Positional Error

검색결과 149건 처리시간 0.024초

볼바를 이용한 공작기계의 3차원 공간오차 해석 (Analysis of 3D Volumetric Error for Machine Tool using Ball Bar)

  • 이호영;최현진;손재환;이달식
    • 한국기계가공학회지
    • /
    • 제10권5호
    • /
    • pp.1-6
    • /
    • 2011
  • Machine tool errors have to be characterized and predicted to improve machine tool accuracy. Therefore, it is very important to assess errors in machine tools. Volumetric error analysis has been developed by many researchers. This paper presents a useful technique for analyzing the volumetric errors in machine tools using the ball bar. The volumetric error model is proposed in specific vertical machining center and the program is developed for generating NC code, acquiring the ball bar data, and analyzing the volumetric errors. The developed system assesses the volumetric errors such as positional, straightness, squareness, and back lash. Also this system analyzes the dynamic performance such as servo gain mismatch. The radial data acquired by ball bar on 3D space is used for analyzing these errors. It is convenient to test the volumetric errors on 3D space because all errors are calculated at once. The developed system has been tested using an actual vertical machining center.

유압실린더의 학습에 의한 위치제어 (Piston control of hydraulic cylinder using an learing strategy)

  • 박성환;권기수;허준영;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1122-1126
    • /
    • 1991
  • As microcomputers have become widespread and the high speed solenoid valves have been developed, digitally controlled hydraulic systems are used in many applications. This study deals with position control of hydraulic cylinder operated by two port 3-way high speed solenoid valve using a self-learning strategy. This was done by developing a control algorithm for the microcomputer which always automatically adjust the length of control pulse to the optimum value in accordance with the error regardless of changes in the operating condition and physical differences between components. Tests carried out in the laboratory indicate that a positional accuracy could be improved.

  • PDF

Parametric Analysis of the Solar Radiation Pressure Model for Precision GPS Orbit Determination

  • Bae, Tae-Suk
    • 한국측량학회지
    • /
    • 제35권1호
    • /
    • pp.55-62
    • /
    • 2017
  • The SRP (Solar Radiation Pressure) model has always been an issue in the dynamic GPS (Global Positioning System) orbit determination. The widely used CODE (Center for Orbit Determination in Europe) model and its variants have nine parameters to estimate the solar radiation pressure from the Sun and to absorb the remaining forces. However, these parameters show a very high correlation with each other and, therefore, only several of them are estimated at most of the IGS (International GNSS Service) analysis centers. In this study, we attempted to numerically verify the correlation between the parameters. For this purpose, a bi-directional, multi-step numerical integrator was developed. The correlation between the SRP parameters was analyzed in terms of post-fit residuals of the orbit. The integrated orbit was fitted to the IGS final orbit as external observations. On top of the parametric analysis of the SRP parameters, we also verified the capabilities of orbit prediction at later time epochs. As a secondary criterion for orbit quality, the positional discontinuity of the daily arcs was also analyzed. The resulting post-fit RMSE (Root-Mean-Squared Error) shows a level of 4.8 mm on average and there is no significant difference between block types. Since the once-per-revolution parameters in the Y-axis are highly correlated with those in the B-axis, the periodic terms in the D- and Y-axis are constrained to zero in order to resolve the correlations. The 6-hr predicted orbit based on the previous day yields about 3 cm or less compared to the IGS final orbit for a week, and reaches up to 6 cm for 24 hours (except for one day). The mean positional discontinuity at the boundary of two 1-day arcs is on the level of 1.4 cm for all non-eclipsing satellites. The developed orbit integrator shows a high performance in statistics of RMSE and positional discontinuity, as well as the separations of the dynamic parameters. In further research, additional verification of the reference frame for the estimated orbit using SLR is necessary to confirm the consistency of the orbit frames.

Mixed-reality simulation for orthognathic surgery

  • Fushima, Kenji;Kobayashi, Masaru
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.13.1-13.12
    • /
    • 2016
  • Background: Mandibular motion tracking system (ManMoS) has been developed for orthognathic surgery. This article aimed to introduce the ManMoS and to examine the accuracy of this system. Methods: Skeletal and dental models are reconstructed in a virtual space from the DICOM data of three-dimensional computed tomography (3D-CT) recording and the STL data of 3D scanning, respectively. The ManMoS uniquely integrates the virtual dento-skeletal model with the real motion of the dental cast mounted on the simulator, using the reference splint. Positional change of the dental cast is tracked by using the 3D motion tracking equipment and reflects on the jaw position of the virtual model in real time, generating the mixed-reality surgical simulation. ManMoS was applied for two clinical cases having a facial asymmetry. In order to assess the accuracy of the ManMoS, the positional change of the lower dental arch was compared between the virtual and real models. Results: With the measurement data of the real lower dental cast as a reference, measurement error for the whole simulation system was less than 0.32 mm. In ManMoS, the skeletal and dental asymmetries were adequately diagnosed in three dimensions. Jaw repositioning was simulated with priority given to the skeletal correction rather than the occlusal correction. In two cases, facial asymmetry was successfully improved while a normal occlusal relationship was reconstructed. Positional change measured in the virtual model did not differ significantly from that in the real model. Conclusions: It was suggested that the accuracy of the ManMoS was good enough for a clinical use. This surgical simulation system appears to meet clinical demands well and is an important facilitator of communication between orthodontists and surgeons.

마이크로 광 시스템 구현을 위한 광학 부품의 위치 정밀도 허용오차 설계 (Tolerance design of position accuracy of optical components for micro optical system)

  • 이재영;황병철;박헌용;박세근;이승걸;오범환;이일항;최두선
    • 대한전자공학회논문지SD
    • /
    • 제41권7호
    • /
    • pp.13-20
    • /
    • 2004
  • 미세 광학 벤치의 설계를 위해서 두 가지 테스트 벤치에 대해 결합효율을 계산하였다. 광섬유로 들어오고 나가게 되는 빛을 볼 렌즈를 통과한 것과 그렇지 않은 것으로 설계하였다. 미세 광학 벤치의 실제 제작 과정에서 발생할 수 있는 광소자들의 위치 에러를 고려하여 시뮬레이션을 하였고, 그것들의 허용오차를 -3 ㏈ 조건으로 정하였다. 볼 렌즈가 없는 fiber-to-fiber에서는 lateral misalignment가 2.7 um 그리고 tilt 에러가 5.8o 이내로 나타났다. 각각의 광섬유 앞단에 광의 집속을 위해 볼 렌즈가 놓여지면 working distance는 60 um로 확장되어지나, 각각의 광소자들이 놓여진 위치 파라미터 사이에 보다 강한 교호작용이 존재하기 때문에 tolerance design을 위해 교호작용을 함께 고려해야 한다.

Quantitative Evaluation of Setup Error for Whole Body Stereotactic Radiosurgery by Image Registration Technique

  • Kim, Young-Seok;Yi, Byong-Yong;Kim, Jong-Hoon;Ahn, Seung-Do;Lee, Sang-wook;Im, Ki-Chun;Park, Eun-Kyung
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.103-105
    • /
    • 2002
  • Whole body stereotactic radiosurgery (WBSRS) technique is believed to be useful for the metastatic lesions as well as relatively small primary tumors in the trunk. Unlike stereotactic radiosurgery to intracranial lesion, inherent limitation on immobilization of whole body makes it difficult to achieve the reliable setup reproducibility. For this reason, it is essential to develop an objective and quantitative method of evaluating setup error for WBSRS. An evaluation technique using image registration has been developed for this purpose. Point pair image registrations with WBSRS frame coordinates were performed between two sets of CT images acquired before each treatment. Positional displacements could be determined by means of volumetric planning target volume (PTV) comparison between the reference and the registered image sets. Twenty eight sets of CT images from 19 WBSRS patients treated in Asan Medical Center have been analyzed by this method for determination of setup random error of each treatment. It is objective and clinically useful to analyze setup error quantitatively by image registration technique with WBSRS frame coordinates.

  • PDF

회전체의 효과적인 3차원 위치오차 측정방법 (A Useful Technique for Measuring the 3-dimensional Positioning of a Rotating Object)

  • 이응석;위현곤;정주노
    • 대한기계학회논문집A
    • /
    • 제21권6호
    • /
    • pp.918-924
    • /
    • 1997
  • A method for measuring the accuracy of rotating objects was studied. Rotating axis errors are significant; such as the spindle error of a manufacturing machine which results in the surface roughness of machined work pieces. Three capacitance type displacement sensors were used to measure the rotating master ball position. The sensors were mounted to the three orthogonal points on the spindle axis. The measurement data were analyzed and shown for rotating spindle accuracy, not only for average roundness error but also for spindle volumetric positional error during the revolutions. This method is simple and economical for industrial field use with regular inspection of rotating machines using portable equipment. Measuring and analyzing time using this method takes only a couple of hours. This method can also measure microscopic amplitude and 3-dimensional direction of vibrating objects.

평판 모터 상태 관측을 위한 비선형 관측기 (A Nonlinear Observer for the Estimation of the Full State of a Sawyer Motor)

  • 김원희;정정주
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2292-2297
    • /
    • 2010
  • To improve the performances of Sawyer motors and to regulate yaw rotation, various feedback control methods have been developed. Almost all of these methods require information on the position, velocity or full state of the motor. Therefore, in this paper, a nonlinear observer is designed to estimate the full state of the four forcers in a Sawyer motor. The proposed method estimates the full state using only positional feedback. Generally, Sawyer motors are operated within a yaw magnitude of several degrees; outside of this range, Sawyer motors step out. Therefore, this observer design assumes that the yaw is within ${\pm}90^\b{o}$. The convergence of the estimation error is proven using the Lyapunov method. The proposed observer guarantees that the estimation error globally exponentially converges to zero for all arbitrary initial conditions. Furthermore, since the proposed observer does not require any transformation, it may result in a reduction in the commutation delay. The simulation results show the performance of the proposed observer.

High accuracy online 3D-reconstruction by multiple cameras

  • Oota, Yoshikazu;Pan, Yaodong;Furuta, Katuhisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1749-1752
    • /
    • 2005
  • For online high accurate reconstruction of an object from an visual information, a linear reconstruction method for multiple images is popular. Basically this method needs many cameras or many different screen shots from different view points. This method, however, has the benefit of less calculation and is adequate for a real time application by comparing other popular method. In this paper, online reconstruction system using more than three cameras is treated. An evaluation method of cameras' position, and of the number is derived for the linear reconstruction method. To decrease errors that are caused from skew of lens, positional error between corresponding points is taken into consideration on the evaluation. The proposed evaluation method enables estimation of the adequate number of cameras and then of feasible view locations. Additionally, repeating search of epipolar lines enables estimation of the hidden point. Comparing with result of an average error analysis, it was confirmed that the proposed methods works effectively.

  • PDF

$\lambda$/4 위상천이 DFB 레이저 다이도드에서 grating 구조상의 비이상성이 발진특성에 미치는 영향 (Effects of structural nonidealities on the lasing characteristics of $\lambda$/4 phase-shifted DFB lasers)

  • 조종섭;김상배
    • 전자공학회논문지A
    • /
    • 제33A권7호
    • /
    • pp.245-252
    • /
    • 1996
  • $\lambda$/4 phase-shifted DFB lasers with nonideal grating structure have been studied by using an effective-index transfer matrix method where material dispersion, vwaveguide dispersion and waveguide-structuredependent loss are taken into consideration. Nonideal grating structure in the center phase-shift region does not incur serous degradation of laser characteristics. Phase-shift error from the ideal shift of $\pi$ causes a decrease in the threshold gain difference and lasing wavelength shift and should be less than $\pi$/4 when residual facet reflectivity is 0.7%. also, positional error of the phase-shift should be less than 9% of the cavity length in order for the threshold gain difference to be decreased less than 10%.

  • PDF