• 제목/요약/키워드: Position-control

검색결과 6,670건 처리시간 0.032초

요통환자의 작업자세에 따른 요천추부 각도의 비교 (Difference in the Lumbosacral Region Angle according to Working Posture of patients with Low Back Pain)

  • 김병곤;박래준;이승주
    • The Journal of Korean Physical Therapy
    • /
    • 제13권1호
    • /
    • pp.127-137
    • /
    • 2001
  • Low back pain is significant problem in today's society, with lifetime incidence rate reported between 50% and 90%. Many factors associated with LBP are reported. The purpose of this studies were to be evaluated static standing posture aberrations in chronic LBP in comparison with healthy individuals. The samples including 80 subjects recruited to the following two groups:patients and control(normal) Questionnaires were completed by 40 LBP patients and 40 controls at the department of Physical Therapy, Saejong neurosurgical clinic in Taegu city from October 1, 1999 to March 30, 2000. The angle of lumbar lordosis was measured on lateral x-ray films with standing position. In LBP groups. the mean degree of lumbar lordosis, sacral inclination, and lumbosacral joint angle were 29.9 ${\pm}$ 9.3, 34.8 ${\pm}$ 8.2, and 12.7 ${\pm}$ 5.7 respectively. Control groups, the mean degree of lumbar lordosis, sacral inclination and lumbosacral joint angle were 35.3 ${\pm}$ 7.8, 34.9 ${\pm}$ 6.4 and 12.5 ${\pm}$ 4.3 respectively. there were significantly decreaseds in lumbar lordosis in Low back pain group. lumbar lordosis on the working posture had significant differences among groups(sitting position patients 31.4 ${\pm}$ 9.3, standing position patients 29.4 ${\pm}$ 9.3, sitting position control 35.0 ${\pm}$ 6.4, standing position control 35.5 ${\pm}$ 8.8, respectively) (p=0.034). sacral inclination on the working posture had differences among groups(sitting position patients 35.9 ${\pm}$ 8.7.standing position patients 33.6 ${\pm}$ 7.6, sitting position control 33.9 ${\pm}$ 5.9. standing position control 35.6 ${\pm}$ 6.8, respectively). lumbersacral joint angle on the working Posture had differences among groups(sitting position patients 12.0 ${\pm}$ 5.6, standing position patients 13.4 ${\pm}$ 5.9, sitting position control 11.2 ${\pm}$ 3.0. standing position control 13.4$^{\circ}$, respectively).

  • PDF

형상기업합금을 이용한 유량제어밸브의 위치제어 적용 시뮬레이션 (A Simulation Study of Position Control Performance of a Shape Memory Alloy-Actuated Flow Control Valve)

  • 최수현;이한석;국금환
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.79-87
    • /
    • 1999
  • In this study, a new type of flow control valve which is SMA actuated flow control valve is presented. The flow control valve is actuated by a small motion of shape memory alloy. The performance of this valve as a position control component is analyzed by computer simulation. A variable structure control technique is applied for the position control by the flow control valve. The position control performance of the valve is evaluated on the step responses of a PID control by a electrohydraulic servo valve. For the simulation study, first, the mathematical model of a hydraulic system, which is consisted of the flow control valve and a hydraulic cylinder, is formulated. This mathematical model and the designed variable structure control algorithm are then combined by the MATLAB software. The same sequence of work is carried out for the PID position control system with a electrohydraulic servo valve. The simulation results show the validity of the new type of flow control valve as a variable position control component.

  • PDF

Robust Tracking Control Based on Intelligent Sliding-Mode Model-Following Position Controllers for PMSM Servo Drives

  • El-Sousy Fayez F.M.
    • Journal of Power Electronics
    • /
    • 제7권2호
    • /
    • pp.159-173
    • /
    • 2007
  • In this paper, an intelligent sliding-mode position controller (ISMC) for achieving favorable decoupling control and high precision position tracking performance of permanent-magnet synchronous motor (PMSM) servo drives is proposed. The intelligent position controller consists of a sliding-mode position controller (SMC) in the position feed-back loop in addition to an on-line trained fuzzy-neural-network model-following controller (FNNMFC) in the feedforward loop. The intelligent position controller combines the merits of the SMC with robust characteristics and the FNNMFC with on-line learning ability for periodic command tracking of a PMSM servo drive. The theoretical analyses of the sliding-mode position controller are described with a second order switching surface (PID) which is insensitive to parameter uncertainties and external load disturbances. To realize high dynamic performance in disturbance rejection and tracking characteristics, an on-line trained FNNMFC is proposed. The connective weights and membership functions of the FNNMFC are trained on-line according to the model-following error between the outputs of the reference model and the PMSM servo drive system. The FNNMFC generates an adaptive control signal which is added to the SMC output to attain robust model-following characteristics under different operating conditions regardless of parameter uncertainties and load disturbances. A computer simulation is developed to demonstrate the effectiveness of the proposed intelligent sliding mode position controller. The results confirm that the proposed ISMC grants robust performance and precise response to the reference model regardless of load disturbances and PMSM parameter uncertainties.

퍼지제어기를 이용한 크레인의 진동억제 및 위치제어 (Anti-swing and position control of crane using fuzzy controller)

  • 정승현;박정일
    • 제어로봇시스템학회논문지
    • /
    • 제3권5호
    • /
    • pp.435-442
    • /
    • 1997
  • The roof crane system is used for transporting a variable load to a target position. The goal of crane control system is transporting the load to a goal position as quick as possible without rope oscillation. The crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid tansportation is required. In this paper, we developed a simple fuzzy controller which has been introduced expert's knowledge base for anti-swing and rapid tranportation to goal position. In particular, we proposed the synthesis reasoning method which synthesizes on the basis of expert knowledge of the angle control input and position control input which are inferenced parallel and simultaneously. And we confirmed that the performance of the developed controller is effective as a result of applying it to crane simulator and also verified whether the proposed synthesis rules have been applied correctly using clustering algorithm from the measured data.

  • PDF

다축 구동 시스템의 정밀 위치동기 제어(I) (High Precision Position Synchronous Control in a Multi-Axes Driving System)

  • 변정환;정석권;양주호
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.115-121
    • /
    • 1996
  • Multi-axes driving system is more suitable for FMS(Flexible Manufacturing System) compared with a conventional single-azis driving system. It has some merits such as flexibility in operation, improvement of net working rate, maintenance free because of no gear train, etc. However, studies on position synchronous control for high precision in the multi-axes driving system are not enough. In this paper, a new method of position synchronous control is suggested in order to apply to the multi- axes driving system. The proposed method is structured very simply using speed and position controller based on PID control law. Especially, the position controller is designed to keep position error to minimize by controlling either speed of two motors. The effectiveness of the proposed method is successfully confirmed through several experiments.

  • PDF

차량용 보조발판의 센서리스 직류전동기 위치 제어 (Sensorless Position Control of DC Motor for the Auxiliary Scaffolding)

  • 이동희
    • 전력전자학회논문지
    • /
    • 제24권6호
    • /
    • pp.389-395
    • /
    • 2019
  • This paper presents the sensorless position control of an auxiliary scaffolding step system for vehicles using DC motors. The designed auxiliary scaffolding step has a mechanical protector at the stop position. At this position, the scaffolding is forcibly stopped by the mechanical protector, and the motor current is dramatically increased to the stall current of the DC motor, thereby increasing the electrical damage. In this study, the estimated back EMF- and current model-based observers are proposed to estimate the motor speed and stop position. A simple V/F acceleration voltage pattern is used to operate the auxiliary scaffolding system. The estimated moving position is adopted to determine the stop position of the DC motor with the load current state. The operating current of the DC motor can be reduced by the estimated moving position and V/F acceleration pattern. At the stop position, the proposed sensorless position controller can smoothly stop the DC motor with the estimated moving position and reduced load current without any mechanical and electrical stress from the stall current from the mechanical protector. The proposed control scheme is verified by the comparison of simulations and experiments.

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

적응제어 기법을 이용한 전기-유압 액츄에이터의 위치제어 (Position Control of an Electro Hydraulic Actuator Using Adaptive Control Method)

  • 조승호
    • 유공압시스템학회논문집
    • /
    • 제7권3호
    • /
    • pp.1-6
    • /
    • 2010
  • This paper deals with the issue of simple adaptive position control for a pump-controlled cylinder system. A fixed displacement pump is utilized instead of servo valve and its speed is controlled by AC motor. The whole control system is composed of a pair of interconnected subsystems, that is, a feedback control system and a feedforward control system. From experiments it is shown that position control using simple adaptive control can accomplish significant reduction in position tracking error comparing to a conventional PID control.

  • PDF

DC Servo Motor의 최단시간 위치 제어 (A Study on Minimum Time Position Control of DC Servo-Motor)

  • 양주호
    • 수산해양기술연구
    • /
    • 제28권1호
    • /
    • pp.39-44
    • /
    • 1992
  • Analog PID controllers have been designed to make good use of position control in industries. Recently, the importance of digital position control is emphasized for the requirements of controller which are not only to control the objects but to include various aspects such as easiness of design and implementation, simple exchange of control program and convenient communications of data between various controllers and a host computer. This study proposes a combined control method which is mixed the vaiable structure control (VSC) with the PI control for minimum time position control of DC servo motor by microcomputer. The results of test by this method show offset-free and minimum time optimal position control which is not affected by the disturbance and the system parameter variations. The validity of the proposed method comparing with the conventional PID control is proved by the response experiments.

  • PDF

천정크레인 부하의 위치 및 흔들림 제어 (Position and swing angle control for loads of overhead cranes)

  • 이호훈;조성근
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.