• Title/Summary/Keyword: Position estimation performance

Search Result 530, Processing Time 0.027 seconds

Sensorless Estimation of Single-Phase Hybrid SRM using Back-EMF

  • Tang, Ying;He, Yingjie;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.198-206
    • /
    • 2017
  • This paper presents a novel scheme to estimate the rotor position of a single-phase hybrid switched reluctance motor (HSRM). The back-EMF generated by the permanent magnet (PM) field whose performance is motor parameter independent is adopted as an index to achieve the sensorless control. The differential value of back-EMF is calculated by hardware and processed by DSP to capture a fixed rotor position four times for every mechanical cycle. In addition, to accomplish the normal starting of HSRM, the determination method of the turn-off time position at the first electrical cycle is also proposed. In this way, a sensorless operation scheme with adjustable turn on/off angle can be achieved without substantial computation. The experimental verification using a prototype drive system is provided to demonstrate the viability of the proposed position estimation scheme.

Position Estimation of Wheeled Mobile Robot using Encoder Trailer (인코더 트레일러를 이용한 이동로봇의 위치 추정)

  • 최종석;김병국
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.306-313
    • /
    • 1999
  • To measure the accurate position of mobile robot, dead-reckoning method using the encoder attached to each wheel is conventionally used, since it is easy to compute and inexpensive to develop. However, that method is useless when slip occurs and error is accumulated with time. This paper proposes a position estimation method using encoder trailer composed of 2 encoders only(ET-2). This method provides accurate position information even when slip occurs, and can reduce accumulated error if we select the proper link lengths of encoder trailer. Experimental results show the performance of ET-2 when slip occurs. Finally, accumulated systematic error from encoder resolution is analyzed in comparison with an existing method with encoder trailer composed of 3 encoders. (As a matter of convenience, we will call the existing encoder trailer ‘ET-3’)

  • PDF

Ultra Precise Position Estimation of Servomotor using Analog Quadrature Encoder

  • Kim Ju-Chan;Hwang Seon-Hwan;Kim Jang-Mok;Kim Cheul-U;Choi Cheol
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.139-145
    • /
    • 2006
  • This paper describes the ultra precise position estimation of a servomotor using a sinusoidal encoder based on Arcsine Interpolation Method for the cost reduction of circuit design. The amplitude and offset errors of the sinusoidal encoder output signals, from the encoder itself and analog signal processing procedures, are effectively compensated and on-line tuned by utilizing a low cost programmable differential amplifier without any special expensive equipment. For a theoretical evaluation of the practical resolution of this system, the relationship between the amplitude of ADC(Analog to Digital Converter) input signal errors and the anticipated resolution is also addressed. The performance of the proposed method is verified by comparing it with speed control characteristics of the servomotor driving system using a digital incremental 50,000ppr encoder in the experiments.

Advanced Method for an Initial Pole Position Estimation of a PMLSM (PMLSM의 개선된 초기 자극위치 추정방법)

  • Lee Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.124-129
    • /
    • 2005
  • This paper presents an advanced method for an initial pole position estimation of a Permanent Magnet Linear Synchronous Motor(PMLSM) that has an accurate incremental encoder for servo applications but does not have Hall sensors as a magnetic pole sensor. By appropriately using the secant method as a numerical method the proposed algorithm finds either of two zero force positions and then the correct d-axis by applying a q-axis test current. It only requires the tuned current controller and the relative position information md so it can be simply applicable to a rotary PMSM. The experimental results show the validity of the proposed method, which has an excellent performance with respect to an accurate pole position estimation under the minimal moving distance(average of about 85㎛) during the estimation process.

The Rotor Position Estimation Techniques of an SRM with Built-in Search Coils at Standstill (서치코일 내장형 SRM의 정지시 회전자 위치 추정 기법)

  • Yang Hyong-Yeol;Shin Duck-Shick;Lim Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.45-51
    • /
    • 2005
  • This paper presents a comparison of rotor position estimation of a switched reluctance motor(SRM) with built-in search coils by three methods. The search coil EMFs are not generated in the SRM with built-in search coils at standstill. So an initial rotor position estimation method is needed. In this paper squared euclidean distance, fuzzy logic and neural network methods we proposed for the estimation of initial rotor position. The simulated results of the three methods are compared. The simulated result of the squared euclidean distance method, which has the best performance, is supported by the experimental result.

Improvement of Position Estimation Based on the Multisensor Fusion in Underwater Unmanned Vehicles (다중센서 융합 기반 무인잠수정 위치추정 개선)

  • Lee, Kyung-Soo;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.178-185
    • /
    • 2011
  • In this paper, we propose the position estimation algorithm based on the multisensor fusion using equalization of state variables and feedback structure. First, the state variables measured from INS of main sensor with large error and DVL of assistance sensor with small error are measured before prediction phase. Next, the equalized state variables are entered to each filter and fused the enhanced state variables for prediction and update phases. Finally, the fused state variables are returned to the main sensor for improving the position estimation of UUV. For evaluation, we create the moving course of UUV by simulation and confirm the performance of position estimation by applying the proposed algorithm. The evaluation results show that the proposed algorithm is the best for position estimation and also possible for robust position estimation at the change period of moving courses.

A Kalman filter with sensor fusion for indoor position estimation (실내 측위 추정을 위한 센서 융합과 결합된 칼만 필터)

  • Janghoon Yang
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.441-449
    • /
    • 2021
  • With advances in autonomous vehicles, there is a growing demand for more accurate position estimation. Especially, this is a case for a moving robot for the indoor operation which necessitates the higher accuracy in position estimation when the robot is required to execute the task at a predestined location. Thus, a method for improving the position estimation which is applicable to both the fixed and the moving object is proposed. The proposed method exploits the initial position estimation from Bluetooth beacon signals as observation signals. Then, it estimates the gravitational acceleration applied to each axis in an inertial frame coordinate through computing roll and pitch angles and combining them with magnetometer measurements to compute yaw angle. Finally, it refines the control inputs for an object with motion dynamics by computing acceleration on each axis, which is used for improving the performance of Kalman filter. The experimental assessment of the proposed algorithm shows that it improves the position estimation accuracy in comparison to a conventional Kalman filter in terms of average error distance at both the fixed and moving states.

The Design of a Position Controller for the Linear Brushless D.C. Motor Using New Auto-tuning PI control Method (새로운 Auto-Tuning PI 제어 방법을 이용한 선형 추진 브러시리스 직류 전동기에 대한 위치 제어기 설계)

  • 최중경;박승엽;전인효
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1121-1124
    • /
    • 1999
  • Linear motor is able to produce line movement without rotary-to-line converter at the system required line moving. Thus Linear motor has no gear, screw, belt for line movement. Therefore it has some advantage which decrease friction loss, noise, vibration, maintenance effort and prevent decay of control performance due to backlash. This paper proposes the estimation method of unknown parameters from the BLDC Linear motor and determine the PI controller gain through this estimation. Each control movement that is current, speed, position control, and PWM wave generation is performed on Processor, which is DSP(Digital Signal Processor), having high speed performance. PI theory is adopted to each for controller for control behavior More fast convergence to command position is accomplished by applying the new velocity locus which derived from position error.

  • PDF

A new vector control method for induction motor (새로운 유도전동기 벡터제어 기법)

  • 변윤섭;왕종배;백종현;박현준
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.680-687
    • /
    • 2000
  • In this paper we present a new vector control scheme for induction motor. An exact knowledge of the rotor flux position is essential for a high-performance vector control. The position of the rotor flux is measured in the direct scheme or estimated in the indirect schemes. Since the estimation of the flux position requires a priori knowledge of the induction motor parameters, the indirect schemes are machine parameter dependent. The rotor resistance and stator resistance among the parameters change with temperature. Variations in the parameters of induction machine cause deterioration of both the steady state and dynamic operation of the induction motor drive. Several methods have been presented to minimize the consequences of parameter sensitivity in indirect scheme. In this paper new estimation scheme of rotor flux position is presented to eliminate sensitivity due to resistance change with temperature. Simulation results are used to verify the performance of the proposed vector control scheme.

  • PDF

Sensorless IPMSM Control Based on an Extended Nonlinear Observer with Rotational Inertia Adjustment and Equivalent Flux Error Compensation

  • Mao, Yongle;Yang, Jiaqiang;Yin, Dejun;Chen, Yangsheng
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2150-2161
    • /
    • 2016
  • Mechanical and electrical parameter uncertainties cause dynamic and static estimation errors of the rotor speed and position, resulting in performance deterioration of sensorless control systems. This paper applies an extended nonlinear observer to interior permanent magnet synchronous motors (IPMSM) for the simultaneous estimation of the rotor speed and position. Two compensation methods are proposed to improve the observer performance against parameter uncertainties: an on-line rotational inertia adjustment approach that employs the gradient descent algorithm to suppress dynamic estimation errors, and an equivalent flux error compensation approach to eliminate static estimation errors caused by inaccurate electrical parameters. The effectiveness of the proposed control strategy is demonstrated by experimental tests.