Browse > Article
http://dx.doi.org/10.12673/jant.2021.25.6.441

A Kalman filter with sensor fusion for indoor position estimation  

Janghoon Yang (Department of AI Software Engineering, Seoul Media Institute of Technology)
Abstract
With advances in autonomous vehicles, there is a growing demand for more accurate position estimation. Especially, this is a case for a moving robot for the indoor operation which necessitates the higher accuracy in position estimation when the robot is required to execute the task at a predestined location. Thus, a method for improving the position estimation which is applicable to both the fixed and the moving object is proposed. The proposed method exploits the initial position estimation from Bluetooth beacon signals as observation signals. Then, it estimates the gravitational acceleration applied to each axis in an inertial frame coordinate through computing roll and pitch angles and combining them with magnetometer measurements to compute yaw angle. Finally, it refines the control inputs for an object with motion dynamics by computing acceleration on each axis, which is used for improving the performance of Kalman filter. The experimental assessment of the proposed algorithm shows that it improves the position estimation accuracy in comparison to a conventional Kalman filter in terms of average error distance at both the fixed and moving states.
Keywords
Bluetooth; IMU; Indoor positioning system; Kalman filter; Position estimation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Yamada, T. Ohtsuki, T. Hisanaga, and L. Zheng, "An indoor position estimation method by maximum likelihood algorithm using RSS," in Proceedings of SICE Annual Conference, Takamatsu:Japan, pp. 2927-2930, Sept. 2007.
2 https://content.arduino.cc/assets/Nano_BLE_Sense_lsm9ds1.pdf
3 H. Huang, G. Gartner, J. M. Krisp, M. Raubal, and N. V. de Weghe (2018), "Location based services: ongoing evolution and research agenda," Journal of Location Based Services, Vol. 12, No. 2, pp. 63-93, 2018.   DOI
4 G. Fotopoulos, and M. Cannon, "An Overview of Multi-Reference Station Methods for cm-Level Positioning," GPS Solutions, Vol. 4, pp. 1-10, Jan. 2001.   DOI
5 P. P. L. L. do Nascimento, B. Y. L. Kimura, D. L. Guidoni, and L. A. Villas, "An Integrated Dead Reckoning with Cooperative Positioning Solution to Assist GPS NLOS Using Vehicular Communications," Sensors, pp.1-28, 2018.
6 W. Sakpere, M. Adeyeye-Oshin, and N. B.W. Mlitwa, "A state-of-the-art survey of indoor positioning and navigation systems and technologies," South African Computer Journal, Vol. 29, No. 3, Dec. 2017.
7 O. Benjak, and D. Gerling, "Review of position estimation methods for IPMSM drives without a position sensor part I: Nonadaptive methods," in Proceeding of the XIX International Conference on Electrical Machines, Rome: Italy, pp. 1-6, Sep. 2010.
8 R. Talluri, and J. Aggarwal, "Position Estimation Techniques for an Autonomous Mobile Robot - a Review," in Handbook of Pattern Recognition and Computer Vision, World Scientific: Singapore, Chapter 4.4, pp. 769-801, 1993.
9 A. Poulose, O. S. Eyobu, and D. S. Han, "An Indoor Position-Estimation Algorithm Using Smartphone IMU Sensor Data," IEEE Access, Vol. 7, pp. 11165-11177, 2019.   DOI
10 S.-G. Kim, J. L. Crassidis, Y. Cheng, A. M. Fosbury, and John L. Junkins, "Kalman Filtering for Relative Spacecraft Attitude and Position Estimation," Journal of Guidance, Control and Dynamics, Vol. 30, No. 1, January-February 2007.
11 H. D. K. Motlagh, F. Lotfi, H. D. Taghirad, and S. B. Germi, "Position Estimation for Drones based on Visual SLAM and IMU in GPS-denied Environment," in Proceedings of the 7th RSI International Conference on Robotics and Mechatronics, Tehran:Iran, Nov. 2019.
12 J. Song, H. Jeong, S. Hur, and Y. Park, "Improved indoor position estimation algorithm based on geo-magnetism intensity," in Proceedings of International Conference on Indoor Positioning and Indoor Navigation, Busan:Korea, pp. 741-744, Oct. 2014.
13 M. Moon, and S. Choi, "Indoor position estimation using image sensor based on VLC," in Proceedings of International Conference on Advanced Technologies for Communications, Hanoi:Vietnam, pp. 11-14, Oct. 2014.
14 Z. Wang, P. Sokliep, C. Xu, J. Huang, L. Lu, and Z. Shi, "Indoor Position Algorithm Based on the Fusion of Wifi and Image," in Proceedings of the Eleventh International Conference on Advanced Computational Intelligence., Guilin:China, pp. 212-216, Jun. 2019.
15 F. Subhan, H. Hasbullah, and K. Ashraf, "Kalman Filter-Based Hybrid Indoor Position Estimation Technique in Bluetooth Networks," International Journal of Navigation and Observation, Vol. 2013, pp. 1- 13, 2013.
16 F. M. Ghannouchi, D. Wang, and S. Tiwari, "Accurate wireless indoor position estimation by using hybrid TDOA/RSS algorithm," in Proceeedings of IEEE International Conference on Vehicular Electronics and Safety, Istanbul:Turkey, pp. 437-441, Jul. 2012
17 A. Belmonte-Hernandez, G. Hernandez-Penaloza, D. Martin Gutierrez, and F. Alvarez, "SWiBluX: Multi-Sensor Deep Learning Fingerprint for Precise Real-Time Indoor Tracking," IEEE Sensors Journal, Vol. 19, No. 9, pp. 3473-3486, May. 2019.   DOI
18 D.-M. Ma, J.-K. Shiau, I-C. Wang, and Y.-H. Lin, "Attitude determination using a MEMS-based flight information measurement unit," Sensors, Vol.12, No. 1, pp. 1-23, Dec. 2012.   DOI
19 Z. Zuo,L. Liu,L. Zhang, and Y. Fang, "Indoor Positioning Based on Bluetooth Low-Energy Beacons Adopting Graph Optimization," Sensors, Vol.18, No. 11, pp. 1-20, Nov. 2018.   DOI
20 J. Yang, "A Controllable False Data Injection Attack for a Cyber Physical System," IEEE Access, Vol. 9, pp. 6721-6728, 2021.   DOI
21 https://en.wikipedia.org/wiki/Earth%27s_magnetic_field
22 M. Faizullin, and G. Ferrer, "Best Axes Composition: Multiple Gyroscopes IMU Sensor Fusion to Reduce Systematic Error," arXiv:2107.02632 [cs.RO], 2021.
23 A. Guidara, G. Fersi, M. B. Jemaa, and F. Derbel, "A new deep learning-based distance and position estimation model for range-based indoor localization systems," Ad Hoc Networks, Vol. 114, Apr. 2021.