• 제목/요약/키워드: Position detection

검색결과 1,519건 처리시간 0.033초

DNN과 HoG Feature를 이용한 도로 소실점 검출 방법 (Method for Road Vanishing Point Detection Using DNN and Hog Feature)

  • 윤대은;최형일
    • 한국콘텐츠학회논문지
    • /
    • 제19권1호
    • /
    • pp.125-131
    • /
    • 2019
  • 소실점이란 실제 공간의 평행한 선들이 영상 내에 투영되면서 한곳에 모이는 점으로, 도로 공간에서의 소실점은 매우 중요한 공간정보이다. 도로 공간에서의 소실점을 이용해 추출된 차선의 위치를 개선하거나, 깊이지도 영상을 생성할 수 있다. 본 논문에서는 자동차의 시점을 기준으로 도로를 촬영한 영상을 Deep Neural Network(DNN)과 Histogram of Oriented Gradient(HoG) Feature를 이용한 소실점 검출 방법을 제안한다. 제안하는 알고리즘에서는 영상을 블록별로 나눠서 주요 에지 방향을 추출하는 HoG Feature 추출 단계와 DNN 학습 단계, 그리고 Test 단계로 나뉜다. 학습단계에서는 자동차 시점으로 기준으로 도로 영상 2300장으로 학습을 진행한다. 그리고 Test 단계에서는 Normalized Euclidean Distance(NormDist) 방법을 사용하여 제안하는 알고리즘의 효율성을 측정한다.

산업용 자율 주행 로봇에서의 격자 지도를 사용한 강화학습 기반 회피 경로 생성기 개발 (Development of Reinforcement Learning-based Obstacle Avoidance toward Autonomous Mobile Robots for an Industrial Environment)

  • 양정연
    • 한국콘텐츠학회논문지
    • /
    • 제19권3호
    • /
    • pp.72-79
    • /
    • 2019
  • 자율 주행은 이동 로봇의 핵심적 기술로써, 측정된 센서 정보를 토대로 불확실한 위치 정보를 이용한 지도 작성 및 수정 기능과, 불확실한 지도 및 센서 정보를 이용한 로봇의 위치 인식 기능으로 구성된다. 자율주행은 이러한 주행 위치의 불확실성에 기반한 확률론적 방법론과 함께 주행 시 장애물의 감지 및 회피 경로의 생성, 반복적 주행 패턴에 따른 경로 관리 기능이 필수적 요소이다. 거리 기반의 스캐너를 통해 관측된 센서 입력은, 지도 구성에 사용된 벽과 같은 정적 물체와 주행 시의 사람처럼 움직이는 동적 물체와의 구별이 필요하기 ?문에 장애물 감지에 어려움이 있다. 본 논문에서는, 이러한 자율 주행 환경에서 기존의 정적, 동적 개체의 판별 방식과 비교하여, 장애물 회피를 위한 저해상도 격자 공간의 생성 및 강화학습을 이용한 경로 생성을 다루고자 한다. 최종적으로 실험을 통해 제안된 방법론의 실효성을 검증하고자 한다.

카메라 캘리브레이션을 위한 자동 타겟 인식 (Automatic Target Recognition for Camera Calibration)

  • 김의명;권상일
    • 한국측량학회지
    • /
    • 제36권6호
    • /
    • pp.525-534
    • /
    • 2018
  • 카메라 캘리브레이션은 카메라의 초점거리, 주점위치, 렌즈왜곡 등의 매개변수를 결정하는 작업으로 이를 위해서 주로 체커보드를 촬영한 영상을 사용하고 있다. 체커보드 영상에서 타겟을 자동으로 인식할 때 기존의 연구는 사용자가 타겟인식을 위한 입력 매개변수를 잘 이해하고 있어야 하거나 영상에서 체커보드가 모두 나타나야 하는 한계점이 있었다. 이에 본 연구에서는 체커보드 중심부와 외곽부분에 각각 4개씩 8개의 블랍을 포함하는 직사각형을 이용하여 체커보드 영상의 일부만 촬영된 경우에도 자동으로 타겟점의 번호를 부여할 수 있고 별도의 입력 매개 변수 없이 자동으로 타겟을 인식하는 방법을 제안하였다. 본 연구에서 체커보드 타겟의 중심점을 자동으로 추출하기 위해서 흑백패턴의 왜곡, 경계선 변화빈도, 흑백픽셀의 비율의 3가지 조건을 이용하였다. 또한 체커보드의 방향성과 번호부여는 블랍을 이용하였다. 두 가지 타입의 체커보드에 대한 실험을 통해서 36장의 영상에 대해 1분 이내의 짧은 시간에 체커보드 타겟을 자동으로 인식할 수 있었다.

자율작업용 원격운용잠수정의 추진 특성에 관한 실험 연구 (Experimental Study on Propulsion Characteristic of Autonomous Intervention ROV)

  • 여태경;이윤건;채준보;윤석민;이영준
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.454-461
    • /
    • 2019
  • In autonomous interventions using an underwater vehicle with a manipulator, grasping based on target detection and recognition is one of the core technologies. To complete an autonomous grasping task, the vehicle body approaches the target closely and then holds it through operating the end-effector of the manipulator, while the vehicle maintains its position and attitude without unstable motion. For vehicle motion control, it is very important to identify the hydrodynamic parameters of the underwater vehicle, including the propulsion force. This study examined the propulsion characteristics of the autonomous intervention ROV developed by KRISO, because there is a difference between the real exerted force and the expected force. First, the mapping between the input signal and thrusting force for each underwater thruster was obtained through a water tank experiment. Next, the real propulsion forces and moments of the ROV exerted by thrusting forces were directly measured using an F/T (force/torque) sensor attached to the ROV. Finally, the differences between the measured and expected values were confirmed.

빅데이터 분석을 활용한 GPS 전파교란 대응방안 (Big Data Analytics for Countermeasure System Against GPS Jamming)

  • 최영동;한경석
    • 한국항행학회논문지
    • /
    • 제23권4호
    • /
    • pp.296-301
    • /
    • 2019
  • 인공지능은 우리 실생활과 밀접하게 연관되어 다양한 분야에서 혁신을 주도하고 있다. 특히 인공지능을 보유한 이동수단으로서, 자율무인이동체의 연구가 활발하게 이루어지고 곧 실용화를 앞두고 있다. 자율자동차와 무인기 등이 스스로 경로를 설정하고 목적지까지 이동하기 위해서는 정확한 위치정보를 제공하는 항법장비가 필수적이다. 현재 운용되고 있는 이동수단들의 항법은 대부분 GPS에 의존하고 있다. 그러나 GPS는 외부 교란에 취약하다. 지난 2010년부터 북한은 수차례 GPS교란을 감행하여 우리 측에 이동통신, 항공기 운항 등에심각한 장애를 유발했다. 따라서 자율무인이동체의 안전성을 보장하고 교란으로 인한 피해를 방지하기 위해서는 신속한 상황판단과 대응이 요구된다. 본 논문에서는 빅데이터, 머신러닝 기술을 기반으로 John Boyd의 OODA LOOP Cycle(탐지-방향설정-결심-행동)을 적용한 조치방안 도출과 결심을 지원하는 GPS 전파교란 대응체계를 제시하였다.

지역난방 냉각수 배관의 용접부 파손 분석 (Failure Analysis of Welded type 304 in Cooling Water Pipeline of District Heating System)

  • 정준철;김우철;김경민;손홍균;김정구;이수열;김희산
    • Corrosion Science and Technology
    • /
    • 제19권6호
    • /
    • pp.296-301
    • /
    • 2020
  • Failure analysis on the welded type 304 pipe used for cooling water piping in the district heating primary side was conducted. Inorganic elements and bacteria in the cooling water and in corrosion products were analyzed, and the weldment was inspected by microscopy and a sensitization test. Corrosion damages were observed in the heat-affected zone, on weld defects such as incomplete fusion or excessive penetration caused by improper welding, or/and at the 6 o'clock position along the pipe axial direction. However, the level of concentration of chloride in the cooling water as low as 80 ppm has been reported to be not enough for even a sensitized type 304 steel, meaning that the additional corrosive factor was required for these corrosion damages. The factor leading to these corrosion damages was drawn to be the metabolisms of the types of bacteria, which is proved by the detection of proton, sulfur containing species, biofilms, and both bacteria and corrosion product analyses.

Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images

  • Kim, Min-Jung;Liu, Yi;Oh, Song Hee;Ahn, Hyo-Won;Kim, Seong-Hun;Nelson, Gerald
    • 대한치과교정학회지
    • /
    • 제51권2호
    • /
    • pp.77-85
    • /
    • 2021
  • Objective: To evaluate the accuracy of a multi-stage convolutional neural network (CNN) model-based automated identification system for posteroanterior (PA) cephalometric landmarks. Methods: The multi-stage CNN model was implemented with a personal computer. A total of 430 PA-cephalograms synthesized from cone-beam computed tomography scans (CBCT-PA) were selected as samples. Twenty-three landmarks used for Tweemac analysis were manually identified on all CBCT-PA images by a single examiner. Intra-examiner reproducibility was confirmed by repeating the identification on 85 randomly selected images, which were subsequently set as test data, with a two-week interval before training. For initial learning stage of the multi-stage CNN model, the data from 345 of 430 CBCT-PA images were used, after which the multi-stage CNN model was tested with previous 85 images. The first manual identification on these 85 images was set as a truth ground. The mean radial error (MRE) and successful detection rate (SDR) were calculated to evaluate the errors in manual identification and artificial intelligence (AI) prediction. Results: The AI showed an average MRE of 2.23 ± 2.02 mm with an SDR of 60.88% for errors of 2 mm or lower. However, in a comparison of the repetitive task, the AI predicted landmarks at the same position, while the MRE for the repeated manual identification was 1.31 ± 0.94 mm. Conclusions: Automated identification for CBCT-synthesized PA cephalometric landmarks did not sufficiently achieve the clinically favorable error range of less than 2 mm. However, AI landmark identification on PA cephalograms showed better consistency than manual identification.

파티클 스웜 최적화에서의 가중치 조절에 기반한 강인한 객체 추적 알고리즘 (Robust Object Tracking based on Weight Control in Particle Swarm Optimization)

  • 강규창;배창석
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.15-29
    • /
    • 2018
  • 본 논문에서는 기존 파티클 스웜 최적화를 기반으로 추적 대상 객체의 이동 궤적을 이용하는 객체 추적기에서 시간 정보 활용의 문제점을 개선한 강인한 객체 추적 알고리즘을 제안한다. 제안하는 알고리즘은 추적 대상 객체와 유사한 특징을 가지는 변위들의 집합에 대한 위치들의 온라인 업데이트와 추적을 가능하게 한다. 객체들의 중첩을 검출하고 추적 대상의 위치를 결정하기 위해 궤적 정보와 변위들의 집합을 기반으로 적응적 파라미터를 사용하는 규칙기반 접근을 사용한다. 기존 알고리즘들과 비교해보면 제안하는 접근법은 가용한 정보를 복합적으로 사용함으로써 각종 임계값에 대한 적응적 조정을 가능하게 한다. 또한, 파티클 스웜 최적화에서 발산에 의한 손실과 불완전한 수렴의 문제를 해결하기 위해 효율적인 가중치 조절 함수를 제안하고 있다. 제안하는 가중치 조절 함수는 파티클들이 최적의 해에 수렴하기 이전에 전체 프레임 영역에서 탐색할 수 있도록 한다. 유사한 특징 조합을 가지는 다중 객체가 존재하는 환경에서 제안 알고리즘을 테스트한 결과, 기존 스웜 최적화 기반의 객체 추적기들에 비해 기존 유사 변위들에 대한 잘못된 추적을 현저히 줄이는 것을 확인할 수 있었다.

머신비전 자동검사를 위한 대상객체의 인식방향성 개선 (Recognition Direction Improvement of Target Object for Machine Vision based Automatic Inspection)

  • 홍승범;홍승우;이규호
    • 한국정보통신학회논문지
    • /
    • 제23권11호
    • /
    • pp.1384-1390
    • /
    • 2019
  • 본 논문은 머신비전기반 자동검사를 위한 대상객체의 인식방향성 개선 연구로서, 영상카메라에 의한 자동 비전검사의 과정에서 제한성이 따르는 대상 객체의 인식방향성을 개선하는 방법을 제안한다. 이를 통하여 머신비전 자동검사에서 시험대상물의 위치와 방향에 상관없이 검사대상의 영상을 검출할 수 있게 함으로써 별도 검사지그의 필요성을 배제하고 검사과정의 자동화 레벨을 향상시킨다. 본 연구에서는 검사대상으로서 와이어 하네스 제조과정에서 실제 적용할 수 있는 기술과 방법을 개발하여 실제 시스템으로 구현한 결과를 제시한다. 시스템구현 결과는 공인기관의 평가를 통하여, 정밀도, 검출인식도, 재현률 및 위치조정 성공률에서 모두 성공적인 측정결과를 얻었고, 당초 설정하였던 10종류의 컬러구별 능력, 1초 이내 검사시간, 4개 자동모드 설정 등에서도 목표달성을 확인하였다.

스파크 유도 플라즈마 분광 시스템을 이용한 우주탐사용 암석 분석연구 (Spark-induced Breakdown Spectroscopy System of Bulk Minerals Aimed at Planetary Analysis)

  • 정재헌;여재익
    • 한국항공우주학회지
    • /
    • 제48권12호
    • /
    • pp.1013-1020
    • /
    • 2020
  • 스파크 유도 플라즈마 분광법 (SIBS)은 전기 스파크를 사용하여 강력한 플라즈마를 유도한 후 원자 방출 스펙트럼 신호를 수집하는 방법이다. 이 연구는 우주 탐사에 활용되는 기존의 레이저 유도 분해 분광법 (LIBS) 대신 SIBS를 사용할 수 있는지의 잠재력을 보기 위해 진행되었다. 과거에는 SIBS를 사용하여 부피가 큰 고체 샘플을 대상으로 실험하는 것이 성공적이지 않았기 때문에, 본 연구에서는 전극 위치 및 전극 재료의 SIBS의 최적화 연구가 수행되었다. LIBS를 사용할 때에 비해 SIBS의 검출 한계 (LOD)가 78에서 20ppm으로 최대 4배 향상되어 있음을 볼 수 있었다. 생성된 플라즈마의 더 높은 에너지로 인해, SIBS에 의한 신호 세기는 동일한 분광계 설정에서 LIBS보다 3배 정도 높았다.