DOI QR코드

DOI QR Code

Spark-induced Breakdown Spectroscopy System of Bulk Minerals Aimed at Planetary Analysis

스파크 유도 플라즈마 분광 시스템을 이용한 우주탐사용 암석 분석연구

  • Jung, Jaehun (Department of Aerospace System Engineering, Seoul National University) ;
  • Yoh, Jai-Ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • Received : 2020.09.15
  • Accepted : 2020.11.26
  • Published : 2020.12.01

Abstract

Spark-induced breakdown spectroscopy (SIBS) utilizes an electric spark to induce a strong plasma for collecting atomic emissions. This study analyses the potential for usinga compact SIBS instead of conventional laser-induced breakdown spectroscopy (LIBS) in discriminating rocks and soils for planetary missions. Targeting bulky solids using SIBS has not been successful in the past, and therefore a series of optimizations of electrode positioning and electrode materials were performed in this work. The limit of detection (LOD) was enhanced up to four times compared to when LIBS was used, showing a change from 78 to 20 ppm from LIBS to SIBS. Because of the higher energy of plasma generated, the signal intensity by SIBS was higher than LIBS in three orders of magnitude with the same spectrometer setup. Changing the electrode material and locating the optimum position of the electrodes were considered for optimizing the current SIBS setup being tested for samples of planetary origin.

스파크 유도 플라즈마 분광법 (SIBS)은 전기 스파크를 사용하여 강력한 플라즈마를 유도한 후 원자 방출 스펙트럼 신호를 수집하는 방법이다. 이 연구는 우주 탐사에 활용되는 기존의 레이저 유도 분해 분광법 (LIBS) 대신 SIBS를 사용할 수 있는지의 잠재력을 보기 위해 진행되었다. 과거에는 SIBS를 사용하여 부피가 큰 고체 샘플을 대상으로 실험하는 것이 성공적이지 않았기 때문에, 본 연구에서는 전극 위치 및 전극 재료의 SIBS의 최적화 연구가 수행되었다. LIBS를 사용할 때에 비해 SIBS의 검출 한계 (LOD)가 78에서 20ppm으로 최대 4배 향상되어 있음을 볼 수 있었다. 생성된 플라즈마의 더 높은 에너지로 인해, SIBS에 의한 신호 세기는 동일한 분광계 설정에서 LIBS보다 3배 정도 높았다.

Keywords

References

  1. Miziolek, A. W., "Laser-induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications," Cambridge University Press, Cambridge, 2006.
  2. Mussazzi, S. Z. and Perini, U. eds., Laser-induced Breakdown Spectroscopy: Theory and Applications, Springer, 2014, pp. 377-410.
  3. Yang, J. H., Jun, H. M. and Yoh, J. J., "Double-pulse laser synchronization aimed at simultaneous detection of enhanced atomic and molecular signals at low pressure conditions," Spectrochimica Acta Part B. 157, 2019.
  4. Huner, A. J. R., Piper, L. G. and Miziolek, A. W., "Spark-induced breakdown psectroscopy: a description of an electrically generated LIBS-like process for elemental analysis of airborne particulates and solid samples," Cambridge University Press 2006 pp. 585-614.
  5. Letty, C., Pastore, A., Mastorakos, E., Balachandran, R. and Couris, S., "Comparison of electrical and laser spark emision spectroscopy for fuel concentration measurements," Experimental Thermal and Fluid Science, Vol. 34, No. 3, 2010, pp. 338-345. https://doi.org/10.1016/j.expthermflusci.2009.10.018
  6. Hunter, A. J. R., Davis, S. J., Piper, L. G., Holtzclaw, K. W. and Fraser, M. E., "Spark-induced breakdown spectroscopy: a new technique for monitoring heavy metals," Applied Spectroscopy, Vol. 54, No. 4, 2000, pp. 575-582. https://doi.org/10.1366/0003702001949753
  7. Kammermann, T., Kreutner, W., Trottmann, M., Merotto, L., Solitic, P. and Bleiner, D., "Spark-induced breakdown spectroscopy of methane/air and hydrogen-enriched methane/air mixtures at engine relevant conditions," Spectrochimica Acta Part B. 148, 2018, pp 152-164. https://doi.org/10.1016/j.sab.2018.06.013
  8. Srungaram, P. K., Ayyalasomayajula, K. K., Yueh, F. Y. and Singh, J. P., "Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils," Spectrochimica Acta Part B. 87, 2013, pp. 108-113. https://doi.org/10.1016/j.sab.2013.05.009
  9. He, X. B., Chen, Y., Li, R. and Wang, F., "Femtosecond laser-ablation spark-induce breakdown spectroscopy and its application to the elemental analysis of aluminum alloys," Journal of Analytical Atomic Spectrometry, Issue 12, 2018.
  10. Hassanimatin, M. M., Tavassoli, S. H., Nosrati, Y. and Safi, A., "A combination of electrical spark and laswer-induced breakdown spectroscopy on a headed sample," Physics of Plasmas, Vol. 26, Issue 3, 2019, pp. 033-303.
  11. Hahn, D. W. and Omenetto, N., "Laser-induced breakdown spectroscopy (LIBS), part I review of basic diagnostics and plasma-particle interactions: still-challenging issues within the analytical plasma community," Applied Spectroscopy, Vol. 64, Issue 12, 2010, pp. 333-366.
  12. Scaffidi, J., Angel, S. M. and Cremers, D. A., "Emission enhancement mechanisms in dualpulse LIBS," Analytical Chemistry, Vol. 78, 2006, pp. 24-32. https://doi.org/10.1021/ac069342z
  13. Popov, A. M., Colao, F. and Antoni, R., "Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils," Journal of Analytical Atomic Spectrometry, 25, 2010, pp. 837-848. https://doi.org/10.1039/b919485a
  14. Dong, D. M., Jiao, L. Z., Du, X. F. and Zhao, C. J., "Ultrasensitive nanoparticle enhanced laserinduced breakdown spectroscopy using a super-hydrophobic substrate coupled with magnetic confinement," Chemical Communications, 53, 2017, pp. 4546-4549. https://doi.org/10.1039/C6CC09695F
  15. Vega, C. G., Bordel, N., Pereiro, R. and Sanz-Medel, A., "Evaluation of the temporal profiles and the analytical features of a laser ablation-pulsed glow discharge coupling for optical emission spectrometry," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 121, 2016, pp. 47-54. https://doi.org/10.1016/j.sab.2016.05.007
  16. Wang, Y., Jiang, Y., He, X., Chen, Y. and Li, R., "Triggered parallel discharge in laser-ablation spark-induced breakdown spectroscopy and studied on its analytical performance for aluminum and brass sample," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 150, 2018, pp. 9-17. https://doi.org/10.1016/j.sab.2018.10.001
  17. Boumans, P. W., Theory of Spectrochemical Excitation, Springer, 1966.
  18. Christensenm, P. R., Bandfield, J. L. and Hamilton, V. E., "A thermal emission spectral library of rock-forming minerals," Journal of geophysical research 105, E4 2000.
  19. Catling, D. C., "On Earth, as it is on Mars?," Nature 429, 2004, pp. 707-708. https://doi.org/10.1038/429707a
  20. Yao, S., Xu, J., Zhang, X. and Zhang, L., "Real-time measurement of constituents in solid materials using particle flow spark induced break-down spectroscopy," Journal of Analytical Atomic Spectrometry, 33, 2018, pp. 986-991. https://doi.org/10.1039/C8JA00075A
  21. Taefi, N., Khalaji, M. and Tavassoli, S. H., "Determination of elemental composition of cement powder by Spark induced breakdown spectroscopy," Cement and Concrete Research, Vol. 40, Isseu 7, 2010, pp. 1114-1119. https://doi.org/10.1016/j.cemconres.2010.03.003
  22. Rosenwasser, S., Asimellis, G., Bromley, B., Hazlett, R., Martin, J., Pearce, T. and Zigler, A., "Development of a method for automated quantitative analysis of ores using LIBS," Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 56, Issue 6, 2001, pp. 707-714. https://doi.org/10.1016/S0584-8547(01)00191-4
  23. Liu, P., Liu, J. M., Wu, D., Sun, L. Y., Hai, R. and Ding, H. B., "Study of spark discharge assisted to enhancement of laser-induced breakdown spectroscopic detection for metal materials," Plasma Chem Plasma Process 38, 2018, pp. 803-816. https://doi.org/10.1007/s11090-018-9900-8
  24. Hunter, A. J. R., Wainner, R. T., Piper L. G. and Davis, S. J., "Rapid field screening of soils for heavy metals with spark induced breakdown spectroscopy," Applied Optics, Vol. 42, No. 12, 2003, pp. 2102-2109. https://doi.org/10.1364/AO.42.002102
  25. Maurice, S., Clegg, S. M., Wiens, R. C., Gasnault, O., Rapin, W., Forni, O., Cousin, A., Sautter, V., Mangold, N., Le Deit, L., Nachon, M., Anderson, R. B., Lanza, N. L., Fabre, C., Payre, V., Lasue, J., Meslin, P. Y., Leveill, R. J., Barraclough, B., Beck, L. P., Bender, S. C., Berger, G. J., Bridges, C., Bridges, N. T., Dromart, G. M., Dyar, D., Francis, R., Frydenvang, J., Gondet, B., Ehlmann, B. L., Herkenhoff, K. E., Johnson, J. R., Langevin, Y., Madsen, M. B., Melikechi, N., Lacour, J. L., Le Mouelic, S., Lewin, E. H., Newsom, E., Ollila, A. M., Pinet, P., Schroder, S., Sirven, J. B., Tokar, R. L., Toplis, M. J., d'Uston, C., Vanimanj, D. T. and Vasavadap, A. R., "ChemCam activities and discoveries during the nominal mission of the Mars science Laboratory in Gale crater, Mars," JJournal of Analytical Atomic Spectrometry, 31, 2016, pp. 863-889. https://doi.org/10.1039/C5JA00417A
  26. Choi, S. J. and Yoh, J. J., "Laser-induced plasma peculiarity at low pressures from the elemental lifetime perspective," Optics Express, Vol. 19, No. 23, 2011, pp. 23097-23103. https://doi.org/10.1364/OE.19.023097