• Title/Summary/Keyword: Position Estimation Error

Search Result 437, Processing Time 0.03 seconds

Position estimation using combined vision and acceleration measurement

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.187-192
    • /
    • 1992
  • There are several potential error sources that can affect the estimation of the position of an object using combined vision and acceleration measurements. Two of the major sources, accelerometer dynamics and random noise in both sensor outputs, are considered. Using a second-order model, the errors introduced by the accelerometer dynamics are reduced by the smaller value of damping ratio and larger value of natural frequency. A Kalman filter approach was developed to minimize the influence of random errors on the position estimate. Experimental results for the end-point movement of a flexible beam confirmed the efficacy of the Kalman filter algorithm.

  • PDF

A Study on Position Estimation of Movable Marker for Localization and Environment Visualization (위치인식 및 환경 가시화를 위한 이동 가능한 마커 위치 추정 연구)

  • Yang, Kyon-Mo;Gwak, Dong-Gi;Han, Jong-Boo;Hahm, Jehun;Seo, Kap-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.357-364
    • /
    • 2020
  • Indoor localization using an artificial marker plays a key role for a robot to be used in a service environment. A number of researchers have predefined the positions of markers and attached them to the positions in order to reduce the error of the localization method. However, it is practically impossible to attach a marker to the predetermined position accurately. In order to visualize the position of an object in the environment based on the marker attached to them, it is necessary to consider a change of marker's position or the addition of a marker because of moving the existed object or adding a new object. In this paper, we studied the method to estimate the artificial marker's global position for the visualization of environment. The system calculates the relative distance from a reference marker to others repeatedly to estimate the marker's position. When the marker's position is changed or new markers are added, our system can recognize the changed situation of the markers. To verify the proposed system, we attached 12 markers at regular intervals on the ceiling and compared the estimation result of the proposed method and the actual distance. In addition, we compared the estimation result when changing the position of an existing marker or adding a new marker.

An Adaptive Motion Estimation Algorithm Using Spatial Correlation (공간 상관성을 이용한 적응적 움직임 추정 알고리즘)

  • 박상곤;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, we propose a fast adaptive diamond search algorithm(FADS) for block matching motion estimation. Fast motion estimation algorithms reduce the computational complexity by using the UESA (Unimodal Error Search Assumption) that the matching error monotonically increases as the search moves away from the global minimum error. Recently many fast BMAs(Block Matching Algorithms) make use of the fact that the global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the adjacent blocks. We change the origin of search window according to the spatially adjacent motion vectors and their MAE(Mean Absolute Error). The computer simulation shows that the proposed algorithm has almost the same computational complexity with UCBDS(Unrestricted Center-Biased Diamond Search)〔1〕, but enhance PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS(Full Search), even for the large motion case, with half the computational load.

  • PDF

Modified Kalman Filter Method for the Position Estimation of an Autonomous Mobile Robot (자율이동 로봇의 위치추정을 위한 변형된 칼만필터 방식)

  • Eom, Ki-Hwan;Kang, Seong-Ho;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.781-790
    • /
    • 2008
  • In order to improve on the divergence by noise convariance in the Kalman filter position estimation, we propose a method of position estimating through compensating the autonomous mobile robot's noise. Proposed method is the modified Kalman filter using neural network. It is prevented the divergence by the estimation of measurement noise covariance and system noise covariance. In order to verify the effectiveness of the proposed method, we performed simulations and experiments for position estimation. The results show that convergence and position error is reduced than the Kalman filter method.

Stochastic Error Compensation Method for RDOA Based Target Localization in Sensor Network (통계적 오차보상 기법을 이용한 센서 네트워크에서의 RDOA 측정치 기반의 표적측위)

  • Choi, Ga-Hyoung;Ra, Won-Sang;Park, Jin-Bae;Yoon, Tae-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1874-1881
    • /
    • 2010
  • A recursive linear stochastic error compensation algorithm is newly proposed for target localization in sensor network which provides range difference of arrival(RDOA) measurements. Target localization with RDOA is a well-known nonlinear estimation problem. Since it can not solve with a closed-form solution, the numerical methods sensitive to initial guess are often used before. As an alternative solution, a pseudo-linear estimation scheme has been used but the auto-correlation of measurement noise still causes unacceptable estimation errors under low SNR conditions. To overcome these problems, a stochastic error compensation method is applied for the target localization problem under the assumption that a priori stochastic information of RDOA measurement noise is available. Apart from the existing methods, the proposed linear target localization scheme can recursively compute the target position estimate which converges to true position in probability. In addition, it is remarked that the suggested algorithm has a structural reconciliation with the existing one such as linear correction least squares(LCLS) estimator. Through the computer simulations, it is demonstrated that the proposed method shows better performance than the LCLS method and guarantees fast and reliable convergence characteristic compared to the nonlinear method.

Direction of Arrival Estimation for Desired Target to Remove Interference and Noise using MUSIC Algorithm and Bayesian Method (베이즈 방법과 뮤직 알고리즘을 이용한 간섭과 잡음제거를 위한 원하는 목표물의 도래방향 추정)

  • Lee, Kwan-Hyeong;Kang, Kyoung-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.400-404
    • /
    • 2015
  • In this paper, we study for direction of arrival MUSIC spatial spectrum algorithm in order to desired signal estimation in spatial. Proposal MUSIC spatial spectrum algorithm in paper use model error and Bayesian method to estimation on correct target position. Receiver array response vector using adaptive array antenna use Bayesian method, and target position estimate to update weight value with model error method. Target's signal estimation of desired direction of arrival in this paper apply weight value of signal covariance matrix for array response vector after removing incident signal interference and noise, respectively. Though simulation, we analyze to compare proposed method with general method.

A robust center estimation of the circular parts based on the weighted circle chords (가중치가 부가된 현들을 이용한 원형부품 중심위치의 강건한 추정)

  • 성효경;최흥문
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.10
    • /
    • pp.51-58
    • /
    • 1997
  • In this paper, a technique ot estimate center positions of the circular parts under noisy condition is presented. The circle chords are segmented from the circle with successively varying angle and weighted to reduce the center estimation errors effected by the orientations of the circle chords. The weighting factors for variable length chords are adaptively detemined according to the error contribution of each chord in center estimation. Robust estimation of the center positions of the circular parts are possible even though the edge informations are partially contaminated by the non-uniform lighting or the background textures. Computer simulations for several images which are obtained for same object under real environment y camera, show that the proposed techniqeu yields 1.85 and 2.77 of estimated error-distribution for center position and radius in mean square error, that the proposed has more robust estimation than those of the conventional methods.

  • PDF

A Relative Position Estimation System using Digital Beam Forming and ToA for Automatic Formation Flight of UAV (UAV 자동 편대비행을 위한 디지털 빔포밍 및 ToA 기반의 상대위치 추정 시스템)

  • Kim, Jae-Wan;Yoon, Jun-Yong;Joo, Yang-Ick
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.9
    • /
    • pp.1092-1097
    • /
    • 2014
  • It is difficult to perform automatic formation flight of UAV (Unmanned Aerial vehicle) when GPS (Global Positionig System) is out of order or has a system error, since the relative position estimation in the flight group is impossible in that case. In this paper, we design a relative localization system for the automatic formation flight of UAV. For this purpose, we adopt digital beam forming (DBF) to estimate the angle with the central controller of the flight group and Particle Filtering scheme to compensate the estimation error of ToA (time of arrival) method. Computer simulation results present a proper distance between the central controller and a following unit to maintain the automatic formation flight.

Target Localization for DIFAR Sonobuoy compensated Bearing Estimation and Sonobuoy Position Error (방위각 추정 및 소노부이 위치 오차를 보상한 DIFAR 소노부이의 표적 위치 추정 성능 향상 기법)

  • Gwak, Sang-Yell
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.221-228
    • /
    • 2020
  • A sonobuoy is dropped onto the surface of water to estimate the bearing of an underwater target. A Directional Frequency Analysis and Recording (DIFAR) sonobuoy has an error in the specific angular section due to the method of estimating bearing and noise, which causes an error in target localization using multiple sonobuoys. In addition, the position of the sonobuoy continues to move, but since a sonobuoy with a GPS is intermittently arranged, it is difficult to estimate the exact position of the sonobuoy. This also causes target localization performance degradation. In this paper, we propose a technique to improve the target localization performance by compensating for bearing errors using characteristics of the DIFAR sonobuoy and multiple-sonobuoy position errors based on the intermittently arranged active sonobuoy with a GPS.

Performance Analysis of Low-Order Surface Methods for Compact Network RTK: Case Study

  • Song, Junesol;Park, Byungwoon;Kee, Changdon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.4 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Compact Network Real-Time Kinematic (RTK) is a method that combines compact RTK and network RTK, and it can effectively reduce the time and spatial de-correlation errors. A network RTK user receives multiple correction information generated from reference stations that constitute a network, calculates correction information that is appropriate for one's own position through a proper combination method, and uses the information for the estimation of the position. This combination method is classified depending on the method for modeling the GPS error elements included in correction information, and the user position accuracy is affected by the accuracy of this modeling. Among the GPS error elements included in correction information, tropospheric delay is generally eliminated using a tropospheric model, and a combination method is then applied. In the case of a tropospheric model, the estimation accuracy varies depending on the meteorological condition, and thus eliminating the tropospheric delay of correction information using a tropospheric model is limited to a certain extent. In this study, correction information modeling accuracy performances were compared focusing on the Low-Order Surface Model (LSM), which models the GPS error elements included in correction information using a low-order surface, and a modified LSM method that considers tropospheric delay characteristics depending on altitude. Both of the two methods model GPS error elements in relation to altitude, but the second method reflects the characteristics of actual tropospheric delay depending on altitude. In this study, the final residual errors of user measurements were compared and analyzed using the correction information generated by the various methods mentioned above. For the performance comparison and analysis, various GPS actual measurement data were collected. The results indicated that the modified LSM method that considers actual tropospheric characteristics showed improved performance in terms of user measurement residual error and position domain residual error.