• Title/Summary/Keyword: Position/Velocity Control

Search Result 645, Processing Time 0.051 seconds

Precise Position Vontrol of an In-Parallel Actuated Manipulator Using Disturbance and Velocity Observer (병렬 구동 매니퓰레이터의 외란 및 속도 추정을 이용한 정밀 위치 제어)

  • 최용훈;심재홍;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1796-1799
    • /
    • 1997
  • This thersis presents precise position control emthods of a 3-PRPS in-parallel manipulator for industrial applications such as assembly of highly integrated semiconductors and microsurgery. Since real-time ontrol is one of the most important issues required for industrial application, the experimental hardware is set up with a VME based DSP controller. In the 3-PRPS parallel mainpulator, structurally existing frictiion at three horizontal links considerably degrades the precise position control. In order to compensate the friction of the horizontal links in the joint space, a disturbance compensation usign disturbance and velocity observers has been proposed and investigated. We analyzed the decision method of eigenvalues of the disturbance observer and the effects of the control resulted form tehsystem model errors. Through a series of simulations and experiments, we see that the methods is capable of compensating variations of the robot parameters such as inertia and damping as well as the joint friction. Experiments show that the disturbance compensation method usign disturbance and velocity observer is very effective to compensate the friction. Compared with conventional PID position control, it decreased position errors ina circular motion by approximately 70%.

  • PDF

High performance velocity and position controller for spindle motor (스핀들용 유도 전동기 고성능 속도 및 위치 제어기)

  • 임충혁;유준혁;김동일;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.648-651
    • /
    • 1996
  • Samsung Electronics has developed high performance velocity and position controller for induction motors, and succeeded in mass production for the first time in Korea. Dynamic performance and final control accuracy of the controller are equivalent to those of AC servo motor controller. At present, we adopted the controller as spindle motor drive for Samsung CNC systems, and expect its wide use in industry as general purpose velocity and position controller for induction motor.

  • PDF

Improvement of elevator position control performance in unified control system (통합 제어 시스템에서의 엘리베이터 위치 제어 성능 개선)

  • Ryu, Hyung-Min;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.34-36
    • /
    • 2002
  • This paper addresses an elevator position control scheme in unified control system. Conventional systems have employed independent micro-processors for speed, car, and group control respectively and the car controller generates a velocity command by combining the time-based and distance-based velocity pattern. In this scheme, it is inevitable that an elevator creeps in the vicinity of target floor, or stops abruptly. The proposed control system employs only one high-performance micro-processor, which can execute the car and group control as well as the speed control. It simply generates the desired position trajectory based on time and on-line corrects a velocity pattern to make the position error be zero. Experimental results show the feasibility of the proposed control scheme.

  • PDF

Nonlinear Control of an Input-Constrained Inverted Pendulum (입력제약을 고려한 도립진자의 비선형 제어)

  • Jung, Jae-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.119-122
    • /
    • 2003
  • The aim of this paper is to propose a nonlinear controller for a single cart-type inverted pendulum using energy-based control scheme. Using a nonlinear model relating the angular position and velocity to the control input and a nonlinear controller is designed to regulate the angular position and velocity in the presence of input constraints. It is proved that the angular position and velocity converge to zero.

  • PDF

Image Sequence Stabilization Scheme Using FIR Filtering

  • Kim, Pyung-Soo
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.515-519
    • /
    • 2003
  • This paper proposes a new image sequence stabilization (ISS) scheme based on filtering of absolute frame positions. The proposed ISS scheme removes undesired motion effects in real-time, while preserving desired gross camera displacements. The well-known finite impulse response (FIR) filter is adopted for filtering. The proposed ISS scheme provides a filtered position and velocity with fine inherent properties. It is demonstrated that the filtered position is not affected by the constant velocity. It is also shown that the filtered velocity is separated from the position. Via numerical simulations, the performance of the proposed scheme is shown to be superior to the existing Kalman filtering scheme.

An Automatic Speed Control System of a Treadmill with Ultrasonic Sensors (초음파 센서를 이용한 트레드밀의 자동속도 제어시스템)

  • Auralius, Manurung;Yoon, Jung-Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.5
    • /
    • pp.505-511
    • /
    • 2011
  • In this paper, we have developed an automatic velocity control system of a small-sized commercial treadmill (belt length of 1.2 m and width of 0.5 m) which is widely used at home and health centers. The control objective is to automatically adjust the treadmill velocity so that the subject's position is maintained within the track when the subject walks at a variable velocity. The subject's position with respect to a reference point is measured by a low-cost sonar sensor located on the back of the subject. Based on an encoder sensor measurement at the treadmill motor, a state feedback control algorithm with Kalman filter was implemented to determine the velocity of the treadmill. In order to reduce the unnatural inertia force felt by the subject, a predefined acceleration limit was applied, which generated smooth velocity trajectories. The experimental results demonstrate the effectiveness of the proposed method in providing successful velocity changes in response to variable velocity walking without causing significant inertia force to the subject. In the pilot study with three subjects, users could change their walking velocity easily and naturally with small deviations during slow, medium, and fast walking. The proposed automatic velocity control algorithm can potentially be applied to any locomotion interface in an economical way without having to use sophisticated and expensive sensors and larger treadmills.

Linear Velocity Control of the Mobile Robot with the Vision System at Corridor Navigation (비전 센서를 갖는 이동 로봇의 복도 주행 시 직진 속도 제어)

  • Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.896-902
    • /
    • 2007
  • This paper proposes a vision-based kinematic control method for mobile robots with camera-on-board. In the previous literature on the control of mobile robots using camera vision information, the forward velocity is set to be a constant, and only the rotational velocity of the robot is controlled. More efficient motion, however, is needed by controlling the forward velocity, depending on the position in the corridor. Thus, both forward and rotational velocities are controlled in the proposed method such that the mobile robots can move faster when the comer of the corridor is far away, and it slows down as it approaches the dead end of the corridor. In this way, the smooth turning motion along the corridor is possible. To this end, visual information using the camera is used to obtain the perspective lines and the distance from the current robot position to the dead end. Then, the vanishing point and the pseudo desired position are obtained, and the forward and rotational velocities are controlled by the LOS(Line Of Sight) guidance law. Both numerical and experimental results are included to demonstrate the validity of the proposed method.

Sensorless Control of Non-salient PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 비돌극형 PMSM 센서리스 제어)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon;Kim Heung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.664-670
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor (PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system that has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, PI controller gains of rotor position tracking controller have a variable structure according to the estimated rotor velocity. In order to boost the bandwidth of PI controller around zero speed, a loop recovery technique is applied to the control system. The proposed method only requires the flux linkage of permanent magnet and is insensitive to the parameter estimation error and variation. The designers can easily determine the possible operating range with a desired bandwidth and perform the vector control even at low speeds. The experimental results show the satisfactory operation of the proposed sensorless algorithm under rated load conditions.

Sliding Mode Control with Velocity Feedforward Gain of a Pneumatic Motor (공압모터의 속도 전향이득을 갖는 슬라이딩 모드 제어)

  • Kim, Geun-Mook;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1061-1064
    • /
    • 2006
  • In this study, the performance of the tracking control of a pneumatic servo motor driven position control system using sliding mode is investigated. It is usually quite difficult to obtain precise tracking control of a pneumatic servo motor driven position control system because of the nonlinear deadband and stick-slip friction of the proportional valve. Therefore, a continuous sliding mode controller with velocity feedforward gain is proposed. Experimental results show that the tracking accurracy can be remarkably improved by adding a proper velocity feedforward term to continuous sliding mode controller.

High Performance Velocity and position Controller for Spindle Motor (스핀들용 유도 전동기 고성능 속도 및 위치 제어기)

  • 유준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.11-14
    • /
    • 1996
  • Samsung Electronics has developed high performance velocity and position controller for induction motors and succeeded in mass production for first time in Lorea. Dynamic performance and final control accuracy of the controller are equivalent to those of AC servo motor controller. At present we adopted the controller as spindle motor drive for Samsung CNC systems and expect its wide use in industry as general purpose velocity and position controller for induction motor.

  • PDF