• Title/Summary/Keyword: Pose accuracy

Search Result 219, Processing Time 0.038 seconds

Algorithm to Improve Accuracy of Location Estimation for AR Games (AR 게임을 위한 위치추정 정확도 향상 알고리즘)

  • Han, Seo Woo;Suh, Doug Young
    • Journal of Broadcast Engineering
    • /
    • v.24 no.1
    • /
    • pp.32-40
    • /
    • 2019
  • Indoor location estimation studies are needed in various fields. The method of estimating the indoor position can be divided into a method using hardware and a method using no hardware. The use of hardware is more accurate, but has the disadvantage of hardware installation costs. Conversely, the non-hardware method is not costly, but it is less accurate. To estimate the location for AR game, you need to get the solution of the Perspective-N-Point (PnP). To obtain the PnP problem, we need three-dimensional coordinates of the space in which we want to estimate the position and images taken in that space. The position can be estimated through six pairs of two-dimensional coordinates matching the three-dimensional coordinates. To further increase the accuracy of the solution, we proposed the use of an additional non-coplanarity degree to determine which points would increase accuracy. As the non-coplanarity degree increases, the accuracy of the position estimation becomes higher. The advantage of the proposed method is that it can be applied to all existing location estimation methods and that it has higher accuracy than hardware estimation.

FBX Format Animation Generation System Combined with Joint Estimation Network using RGB Images (RGB 이미지를 이용한 관절 추정 네트워크와 결합된 FBX 형식 애니메이션 생성 시스템)

  • Lee, Yujin;Kim, Sangjoon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.519-532
    • /
    • 2021
  • Recently, in various fields such as games, movies, and animation, content that uses motion capture to build body models and create characters to express in 3D space is increasing. Studies are underway to generate animations using RGB-D cameras to compensate for problems such as the cost of cinematography in how to place joints by attaching markers, but the problem of pose estimation accuracy or equipment cost still exists. Therefore, in this paper, we propose a system that inputs RGB images into a joint estimation network and converts the results into 3D data to create FBX format animations in order to reduce the equipment cost required for animation creation and increase joint estimation accuracy. First, the two-dimensional joint is estimated for the RGB image, and the three-dimensional coordinates of the joint are estimated using this value. The result is converted to a quaternion, rotated, and an animation in FBX format is created. To measure the accuracy of the proposed method, the system operation was verified by comparing the error between the animation generated based on the 3D position of the marker by attaching a marker to the body and the animation generated by the proposed system.

Point Pattern Matching Based Global Localization using Ceiling Vision (천장 조명을 이용한 점 패턴 매칭 기반의 광역적인 위치 추정)

  • Kang, Min-Tae;Sung, Chang-Hun;Roh, Hyun-Chul;Chung, Myung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1934-1935
    • /
    • 2011
  • In order for a service robot to perform several tasks, basically autonomous navigation technique such as localization, mapping, and path planning is required. The localization (estimation robot's pose) is fundamental ability for service robot to navigate autonomously. In this paper, we propose a new system for point pattern matching based visual global localization using spot lightings in ceiling. The proposed algorithm us suitable for system that demands high accuracy and fast update rate such a guide robot in the exhibition. A single camera looking upward direction (called ceiling vision system) is mounted on the head of the mobile robot and image features such as lightings are detected and tracked through the image sequence. For detecting more spot lightings, we choose wide FOV lens, and inevitably there is serious image distortion. But by applying correction calculation only for the position of spot lightings not whole image pixels, we can decrease the processing time. And then using point pattern matching and least square estimation, finally we can get the precise position and orientation of the mobile robot. Experimental results demonstrate the accuracy and update rate of the proposed algorithm in real environments.

  • PDF

Outdoor Localization through GPS Data and Matching of Lane Markers for a Mobile Robot (GPS 정보와 차선정보의 정합을 통한 이동로봇의 실외 위치추정)

  • Ji, Yong-Hoon;Bae, Ji-Hun;Song, Jae-Bok;Ryu, Jae-Kwan;Baek, Joo-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.6
    • /
    • pp.594-600
    • /
    • 2012
  • Accurate localization is very important to stable navigation of a mobile robot. This paper deals with local localization of a mobile robot especially for outdoor environments. The GPS information is the easiest way to obtain the outdoor position information. However, the GPS accuracy can be severely affected by environmental conditions. To deal with this problem, the GPS and wheel odometry can be combined using an EKF (Extended Kalman Filter). However, this is not enough for safe navigation of a mobile robot in outdoor environments. This paper proposes a novel method using lane features from the road image. The pose data of a mobile robot can be corrected by analyzing the detected lane features. This can improve the accuracy of the localization process substantially.

Fast and Robust Face Detection based on CNN in Wild Environment (CNN 기반의 와일드 환경에 강인한 고속 얼굴 검출 방법)

  • Song, Junam;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1310-1319
    • /
    • 2016
  • Face detection is the first step in a wide range of face applications. However, detecting faces in the wild is still a challenging task due to the wide range of variations in pose, scale, and occlusions. Recently, many deep learning methods have been proposed for face detection. However, further improvements are required in the wild. Another important issue to be considered in the face detection is the computational complexity. Current state-of-the-art deep learning methods require a large number of patches to deal with varying scales and the arbitrary image sizes, which result in an increased computational complexity. To reduce the complexity while achieving better detection accuracy, we propose a fully convolutional network-based face detection that can take arbitrarily-sized input and produce feature maps (heat maps) corresponding to the input image size. To deal with the various face scales, a multi-scale network architecture that utilizes the facial components when learning the feature maps is proposed. On top of it, we design multi-task learning technique to improve detection performance. Extensive experiments have been conducted on the FDDB dataset. The experimental results show that the proposed method outperforms state-of-the-art methods with the accuracy of 82.33% at 517 false alarms, while improving computational efficiency significantly.

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.

High Accuracy Skeleton Estimation using 3D Volumetric Model based on RGB-D

  • Kim, Kyung-Jin;Park, Byung-Seo;Kang, Ji-Won;Kim, Jin-Kyum;Kim, Woo-Suk;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.25 no.7
    • /
    • pp.1095-1106
    • /
    • 2020
  • In this paper, we propose an algorithm that extracts a high-precision 3D skeleton using a model generated using a distributed RGB-D camera. When information about a 3D model is extracted through a distributed RGB-D camera, if the information of the 3D model is used, a skeleton with higher precision can be obtained. In this paper, in order to improve the precision of the 2D skeleton, we find the conditions to obtain the 2D skeleton well using the PCA. Through this, high-quality 2D skeletons are obtained, and high-precision 3D skeletons are extracted by combining the information of the 2D skeletons. Even though this process goes through, the generated skeleton may have errors, so we propose an algorithm that removes these errors by using the information of the 3D model. We were able to extract very high accuracy skeletons using the proposed method.

Automatic Detection of Dead Trees Based on Lightweight YOLOv4 and UAV Imagery

  • Yuanhang Jin;Maolin Xu;Jiayuan Zheng
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.614-630
    • /
    • 2023
  • Dead trees significantly impact forest production and the ecological environment and pose constraints to the sustainable development of forests. A lightweight YOLOv4 dead tree detection algorithm based on unmanned aerial vehicle images is proposed to address current limitations in dead tree detection that rely mainly on inefficient, unsafe and easy-to-miss manual inspections. An improved logarithmic transformation method was developed in data pre-processing to display tree features in the shadows. For the model structure, the original CSPDarkNet-53 backbone feature extraction network was replaced by MobileNetV3. Some of the standard convolutional blocks in the original extraction network were replaced by depthwise separable convolution blocks. The new ReLU6 activation function replaced the original LeakyReLU activation function to make the network more robust for low-precision computations. The K-means++ clustering method was also integrated to generate anchor boxes that are more suitable for the dataset. The experimental results show that the improved algorithm achieved an accuracy of 97.33%, higher than other methods. The detection speed of the proposed approach is higher than that of YOLOv4, improving the efficiency and accuracy of the detection process.

Method for simultaneous analysis of bisphenols and phthalates in corn oil via liquid chromatography-tandem mass spectrometry

  • Min-Chul Shin;Hee-Jin Jeong;Seoung-Min Lee;Jong-Su Seo;Jong-Hwan Kim
    • Analytical Science and Technology
    • /
    • v.37 no.5
    • /
    • pp.271-279
    • /
    • 2024
  • Bisphenols and phthalates are endocrine-disrupting chemicals that are commonly used in packaging and as plasticizers. However, they pose health risks through ingestion, inhalation, and dermal contact. Accurate analysis of these pollutants is challenging owing to their low concentration and their presence in complex oil matrices. Therefore, they require efficient extraction and detection methods. In this study, an analytical method for the simultaneous quantification of bisphenols and phthalates in corn oil is developed. The dynamic multiple reaction monitoring mode of liquid chromatography-tandem mass spectrometry is used according to the different polarities of bisphenols and phthalates. The method is validated by assessing system suitability, linearity, accuracy, precision, homogeneity, and stability. The determination coefficients are higher than 0.99, which is acceptable. The percentage recovery and coefficient of variation of the accuracy and precision confirm that this analytical method is capable of simultaneously quantifying bisphenols and phthalates in corn oil. The bisphenols and phthalates in the formulations and pretreatment samples are stable for 7 d at room temperature and 24 h in an auto-sampler. Therefore, this validated analytical method is effective for the simultaneous quantification of bisphenols and phthalates in oils.

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.