• 제목/요약/키워드: Pose accuracy

검색결과 219건 처리시간 0.029초

관절의 회전각을 이용한 자세 매칭률 획득 방법 (A Method of Pose Matching Rate Acquisition Using The Angle of Rotation of Joint)

  • 현훈범;송수호;이현
    • 대한임베디드공학회논문지
    • /
    • 제11권3호
    • /
    • pp.183-191
    • /
    • 2016
  • Recently, in rehabilitation treatment, the situation that requires a measure of the accuracy of the pose and movement of joints is being increased due to the habits and lifestyle of modern people and the environment. In particular, there is a need for active automated system that can determine itself for the matching rate of pose Basically, a method for measuring the matching rate of pose is used by extracting an image using the Kinect or extracting a silhouette using the imaging device. However, in the case of extracting a silhouette, it is difficult to set the comparison, and in the case of using the Kinect sensor, there is a disadvantages that high accumulated error rate according to movement. Therefore, In this paper, we propose a method to reduce the accumulated error of matching rate of pose getting the rotation angle of joint by measuring the real-time amount of change of 9-axis sensor. In particular, it can be measured same conditions that unrelated of the physical condition and unaffected by the data for the back and forth movement, because of it compares the current rotation angle of the joint. Finally, we show a comparative advantage results by compared with traditional method of extracting a silhouette and a method using a Kinect sensor.

A Multi-Stage Convolution Machine with Scaling and Dilation for Human Pose Estimation

  • Nie, Yali;Lee, Jaehwan;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3182-3198
    • /
    • 2019
  • Vision-based Human Pose Estimation has been considered as one of challenging research subjects due to problems including confounding background clutter, diversity of human appearances and illumination changes in scenes. To tackle these problems, we propose to use a new multi-stage convolution machine for estimating human pose. To provide better heatmap prediction of body joints, the proposed machine repeatedly produces multiple predictions according to stages with receptive field large enough for learning the long-range spatial relationship. And stages are composed of various modules according to their strategic purposes. Pyramid stacking module and dilation module are used to handle problem of human pose at multiple scales. Their multi-scale information from different receptive fields are fused with concatenation, which can catch more contextual information from different features. And spatial and channel information of a given input are converted to gating factors by squeezing the feature maps to a single numeric value based on its importance in order to give each of the network channels different weights. Compared with other ConvNet-based architectures, we demonstrated that our proposed architecture achieved higher accuracy on experiments using standard benchmarks of LSP and MPII pose datasets.

공장환경에서 AGV를 위한 인공표식 기반의 포즈그래프 SLAM (Artificial Landmark based Pose-Graph SLAM for AGVs in Factory Environments)

  • 허환;송재복
    • 로봇학회논문지
    • /
    • 제10권2호
    • /
    • pp.112-118
    • /
    • 2015
  • This paper proposes a pose-graph based SLAM method using an upward-looking camera and artificial landmarks for AGVs in factory environments. The proposed method provides a way to acquire the camera extrinsic matrix and improves the accuracy of feature observation using a low-cost camera. SLAM is conducted by optimizing AGV's explored path using the artificial landmarks installed on the ceiling at various locations. As the AGV explores, the pose nodes are added based on the certain distance from odometry and the landmark nodes are registered when AGV recognizes the fiducial marks. As a result of the proposed scheme, a graph network is created and optimized through a G2O optimization tool so that the accumulated error due to the slip is minimized. The experiment shows that the proposed method is robust for SLAM in real factory environments.

An Evaluation Method of Taekwondo Poomsae Performance

  • Thi Thuy Hoang;Heejune Ahn
    • Journal of information and communication convergence engineering
    • /
    • 제21권4호
    • /
    • pp.337-345
    • /
    • 2023
  • In this study, we formulated a method that evaluates Taekwondo Poomsae performance using a series of choreographed training movements. Despite recent achievements in 3D human pose estimation (HPE) performance, the analysis of human actions remains challenging. In particular, Taekwondo Poomsae action analysis is challenging owing to the absence of time synchronization data and necessity to compare postures, rather than directly relying on joint locations owing to differences in human shapes. To address these challenges, we first decomposed human joint representation into joint rotation (posture) and limb length (body shape), then synchronized a comparison between test and reference pose sequences using DTW (dynamic time warping), and finally compared pose angles for each joint. Experimental results demonstrate that our method successfully synchronizes test action sequences with the reference sequence and reflects a considerable gap in performance between practitioners and professionals. Thus, our method can detect incorrect poses and help practitioners improve accuracy, balance, and speed of movement.

Multi-camera-based 3D Human Pose Estimation for Close-Proximity Human-robot Collaboration in Construction

  • Sarkar, Sajib;Jang, Youjin;Jeong, Inbae
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.328-335
    • /
    • 2022
  • With the advance of robot capabilities and functionalities, construction robots assisting construction workers have been increasingly deployed on construction sites to improve safety, efficiency and productivity. For close-proximity human-robot collaboration in construction sites, robots need to be aware of the context, especially construction worker's behavior, in real-time to avoid collision with workers. To recognize human behavior, most previous studies obtained 3D human poses using a single camera or an RGB-depth (RGB-D) camera. However, single-camera detection has limitations such as occlusions, detection failure, and sensor malfunction, and an RGB-D camera may suffer from interference from lighting conditions and surface material. To address these issues, this study proposes a novel method of 3D human pose estimation by extracting 2D location of each joint from multiple images captured at the same time from different viewpoints, fusing each joint's 2D locations, and estimating the 3D joint location. For higher accuracy, the probabilistic representation is used to extract the 2D location of the joints, considering each joint location extracted from images as a noisy partial observation. Then, this study estimates the 3D human pose by fusing the probabilistic 2D joint locations to maximize the likelihood. The proposed method was evaluated in both simulation and laboratory settings, and the results demonstrated the accuracy of estimation and the feasibility in practice. This study contributes to ensuring human safety in close-proximity human-robot collaboration by providing a novel method of 3D human pose estimation.

  • PDF

2D Human Pose Estimation based on Object Detection using RGB-D information

  • Park, Seohee;Ji, Myunggeun;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권2호
    • /
    • pp.800-816
    • /
    • 2018
  • In recent years, video surveillance research has been able to recognize various behaviors of pedestrians and analyze the overall situation of objects by combining image analysis technology and deep learning method. Human Activity Recognition (HAR), which is important issue in video surveillance research, is a field to detect abnormal behavior of pedestrians in CCTV environment. In order to recognize human behavior, it is necessary to detect the human in the image and to estimate the pose from the detected human. In this paper, we propose a novel approach for 2D Human Pose Estimation based on object detection using RGB-D information. By adding depth information to the RGB information that has some limitation in detecting object due to lack of topological information, we can improve the detecting accuracy. Subsequently, the rescaled region of the detected object is applied to ConVol.utional Pose Machines (CPM) which is a sequential prediction structure based on ConVol.utional Neural Network. We utilize CPM to generate belief maps to predict the positions of keypoint representing human body parts and to estimate human pose by detecting 14 key body points. From the experimental results, we can prove that the proposed method detects target objects robustly in occlusion. It is also possible to perform 2D human pose estimation by providing an accurately detected region as an input of the CPM. As for the future work, we will estimate the 3D human pose by mapping the 2D coordinate information on the body part onto the 3D space. Consequently, we can provide useful human behavior information in the research of HAR.

A Kidnapping Detection Using Human Pose Estimation in Intelligent Video Surveillance Systems

  • Park, Ju Hyun;Song, KwangHo;Kim, Yoo-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권8호
    • /
    • pp.9-16
    • /
    • 2018
  • In this paper, a kidnapping detection scheme in which human pose estimation is used to classify accurately between kidnapping cases and normal ones is proposed. To estimate human poses from input video, human's 10 joint information is extracted by OpenPose library. In addition to the features which are used in the previous study to represent the size change rates and the regularities of human activities, the human pose estimation features which are computed from the location of detected human's joints are used as the features to distinguish kidnapping situations from the normal accompanying ones. A frame-based kidnapping detection scheme is generated according to the selection of J48 decision tree model from the comparison of several representative classification models. When a video has more frames of kidnapping situation than the threshold ratio after two people meet in the video, the proposed scheme detects and notifies the occurrence of kidnapping event. To check the feasibility of the proposed scheme, the detection accuracy of our newly proposed scheme is compared with that of the previous scheme. According to the experiment results, the proposed scheme could detect kidnapping situations more 4.73% correctly than the previous scheme.

Real-time Object Recognition with Pose Initialization for Large-scale Standalone Mobile Augmented Reality

  • Lee, Suwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4098-4116
    • /
    • 2020
  • Mobile devices such as smartphones are very attractive targets for augmented reality (AR) services, but their limited resources make it difficult to increase the number of objects to be recognized. When the recognition process is scaled to a large number of objects, it typically requires significant computation time and memory. Therefore, most large-scale mobile AR systems rely on a server to outsource recognition process to a high-performance PC, but this limits the scenarios available in the AR services. As a part of realizing large-scale standalone mobile AR, this paper presents a solution to the problem of accuracy, memory, and speed for large-scale object recognition. To this end, we design our own basic feature and realize spatial locality, selective feature extraction, rough pose estimation, and selective feature matching. Experiments are performed to verify the appropriateness of the proposed method for realizing large-scale standalone mobile AR in terms of efficiency and accuracy.

다중 카메라 시스템을 위한 전방위 Visual-LiDAR SLAM (Omni-directional Visual-LiDAR SLAM for Multi-Camera System)

  • 지샨 자비드;김곤우
    • 로봇학회논문지
    • /
    • 제17권3호
    • /
    • pp.353-358
    • /
    • 2022
  • Due to the limited field of view of the pinhole camera, there is a lack of stability and accuracy in camera pose estimation applications such as visual SLAM. Nowadays, multiple-camera setups and large field of cameras are used to solve such issues. However, a multiple-camera system increases the computation complexity of the algorithm. Therefore, in multiple camera-assisted visual simultaneous localization and mapping (vSLAM) the multi-view tracking algorithm is proposed that can be used to balance the budget of the features in tracking and local mapping. The proposed algorithm is based on PanoSLAM architecture with a panoramic camera model. To avoid the scale issue 3D LiDAR is fused with omnidirectional camera setup. The depth is directly estimated from 3D LiDAR and the remaining features are triangulated from pose information. To validate the method, we collected a dataset from the outdoor environment and performed extensive experiments. The accuracy was measured by the absolute trajectory error which shows comparable robustness in various environments.

Skeleton 정보와 LSTM을 이용한 작업자 동작인식 (Motion Recognition of Workers using Skeleton and LSTM)

  • 전왕수;이상용
    • 한국멀티미디어학회논문지
    • /
    • 제25권4호
    • /
    • pp.575-582
    • /
    • 2022
  • In the manufacturing environment, research to minimize robot collisions with human beings have been widespread, but in order to interact with robots, it is important to precisely recognize and predict human actions. In this research, after enhancing performance by applying group normalization to the Hourglass model to detect the operator motion, the skeleton was estimated and data were created using this model. And then, three types of operator's movements were recognized using LSTM. As results of the experiment, the accuracy was enhanced by 1% using group normalization, and the recognition accuracy was 99.6%.