
1. Introduction

SLAM enables mobile robots to move autonomously in an 

unknown environment. Visual SLAM is a technique used to 

estimate camera motion and generate a map from a sequence of 

images. It is a fundamental block for robot navigation, virtual 

reality, augmented reality like applications [1,2]. vSLAM can be 

divided into a mono-SLAM, stereo-SLAM and RGBD-SLAM. 

The many popular algorithms have been published in the 

literature and recognized widely such as ORB-SLAM2 [3], 

LSD-SLAM [4], PTAM [5], DSO [6], SVO [7] based on either 

monocular camera, stereo camera or RGB-D sensor. 

In recent years, the panoramic vision system is widely used by 

many researchers to obtain more visual information for use in 

various environments. In literature, three types of panoramic 

vision systems are used such as the catadioptric vision system [8,9] 

is widely used for 2D motion estimation, fisheye cameras [10] are 

designed for multiple fisheye systems and multi-camera vision 

systems [11]. The most popular and widely used panoramic. 

environments, such as the problem of direct sunlight, lack of 

texture and rough terrain and sensor failure could complicate 

the environment for reliable motion estimation. All these 

factors lead to the lack of stable trackable points in complex 

environments which affect the overall performance of visual 
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simultaneous localization and mapping (SLAM). 

Multi-camera and panoramic imaging systems have been 

widely used in the field of computer vision and robotics. 

Recently, spherical panoramic data have become increasingly 

popular for application in visual Odometry, and localization and 

mapping. Panoramic SLAM [11], Multi-camera SLAM [12], 

omniSLAM [13], Cubemap-SLAM [14], and Multicol-SLAM [15] 

are the complete feature-based SLAM system being used in the 

literature. 

Multi-camera setup can solve the problems of visual SLAM in 

featureless region. However, in same time they increase the 

computational resources of algorithm. Therefore, our vSLAM 

algorithm balance the feature with appropriate number of feature 

selection from all camera. Instead of taking all features for 

tracking and mapping, only limited feature is selected from all 

views. The overall features from all views are managed based on 

complexity of environment, such as if the environment is feature 

rich the overall features are maintained to a suitable number 

good for tracking and mapping other features are discarded. 

Furthermore, the depth is added for each camera from 3D LiDAR. 

The major contribution of this paper is as follows: 

∙ The visual LiDAR SLAM for multi camera setup. 

∙ The multi-view feature tracking and depth registration from 

3D-LiDAR.

∙ The experimentation is performed for our campus dataset 

with GPS provided ground truth.

2. Visual LiDAR SLAM

The extrinsic calibration is performed between the camera and 

LiDAR with mutual information maximization [16,17]. The 

method is targetless without using any specific calibration target. 

The calibration parameters are obtained between the camera and 

LiDAR by maximizing the mutual information obtained from the 

surface intensities. The dataset is recorded from the outdoor 

environment with ROS-based recorded software. A detailed 

description of the dataset can be found at [18]. The data is 

time-stamped as it reaches the system. The manual delay is 

calculated between the camera and LiDAR as the camera used 

firewire. There is a transmission offset caused by the 800 Mb/s 

Firewire between the camera and Lidar. 

The time synchronization is performed with provided 

timestamps for the camera, LiDAR, and IMU. The close 

timestamp is chosen with reference to the camera.

The multi-camera rig is used for visual odometry as utilized in 

[11]. The multi-camera consists of several fisheye cameras having 

a slight offset from each other and a panoramic center. First each 

point in the fisheye coordinate is translated into a panoramic point 

according to the rotation and translation between each individual 

fisheye camera and the panoramic camera by equation (1). 

 ′ 







(1)

[Fig. 1] visual-LiDAR SLAM pipeline
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Where, 

 is the rotation matrix, 


  represents the intrinsic 

calibration parameters for each camera and the 

 is the trans-

lation vector for each camera. The detailed of camera model is 

presented in PanoSLAM [11]. 

This paper presents the omnidirectional Visual LiDAR 

SLAM algorithm for the multi-camera panoramic system, the 

module of the proposed algorithms is shown in [Fig. 1]. 

The features are detected from each view of the multi-camera 

panoramic rig. The fast feature detector is used to detect features 

from high resolutions images. To overcome the computational 

complexities, the features are detected in parallel threads. The 

detected features are then tracked based on KLT [10] tracking 

algorithm. The tracking is performed for each of the features of 

the individual camera in a parallel thread. 

The multiple cameras have the advantages in case of the 

complex region to provide enough information for tracking, 

but in the case of a structured environment, the environment 

provides a lot number of features for tracking. These features 

increase the computational complexities of the system. Due to a 

large number of cameras (five in our case), the total number of 

extracted features increases the computation complexities of the 

algorithm. Therefore, features are budgeted for tracking and 

mapping. The adaptive strategies are used to budget overall 

features. The limited features are enough for tracking and 

mapping (say 500-600 features in the map for each key frame). If 

one camera provides enough features for tracking, other camera 

features are not added to the map. The overall budget is kept 

constant based on the number of extracted features.

 only a few features are placed into the map for pose 

estimation. Firstly, the feature probability is checked for each 

camera, the more the probability there are high chances to get a 

good pose. Based on the probability of features one view is 

selected.

Once features are tracked, the depth is estimated from 3D 

LiDAR for each camera. The depth extraction is performed by 

selecting the neighborhood region across each feature. Firstly, 

foreground and background features are separated based on 

depth information. Then a plane is fitted to foreground features, 

the depth is extracted by finding the intersection of with feature. 

The map is initialized by extracting depth from 3D LiDAR.

The estimated pose is then refined based on pose-only 

optimization of triangulated map points. The initial pose between 

two adjacent spherical frames is used to triangulate the 3D 

landmarks of the remaining point for the sphere. The g2o [19] is 

utilized to solve the optimization problem based on the panoramic 

camera model similar to and only pose is optimized. The 

optimization problem is formulated as: 










∥




∥exp
∥


exp

∥ (2)

Where 

 and 


 are the 3D features of the sphere and world 

coordinate system and the  is the sphere radius. The equation is 

used to minimize the re-projection error of the sphere point.

The loop closure detection is based on bag of word (bow) [20].

3. Experiments and Results

In order to evaluate the proposed system, we conduct 

experiments with real-world datasets. The proposed framework 

is implemented and tested on the Hyundai i30 (Hyundai Motor 

Company, Seoul, South Korea), shown in [Fig. 1]. The platform 

is equipped with a Ladybug omnidirectional camera, mounted on 

the center top of the platform. The RTK Novatel GPS is on the 

left side of the platform with dual antennas setup. Ladybug is a 

high resolution spherical digital camera system with 360-degree 

coverage at a high-speed interface. The Ladybug3 has six 

2-Megapixel cameras with five cameras in a circular rig and one 

camera is positioned at the top. This helps the system to cover 

more than 80 percent area of the full sphere, and all the cameras 

are pre-calibrated to enable high-quality spherical image 

stitching. The Ladybug3 allows to capture data at multiple 

resolutions and as well as different frame rates. Moreover, it also 

provides the hardware jpeg compression to support high frame 

rate. Novatel RTK GPS is compact, robust, high precision fully 

integrated global positioning system. The maximum data rate of 

GNSS is up to 100hz. In the proposed platform, GPS 

measurements are recorded at 100hz to provide the ground truth 

trajectories of a dataset that are used to calculate average 

trajectory error (ATE) for evaluation of visual odometry and 

SLAM algorithms.

The dataset is recorded from the outdoor environment in 2 

sequences including outdoor parking, campus main road as 

shown in [Fig. 2]. The RTK GPS is used as ground truth for 

testing and evaluation of the proposed method. In the 

experiments, the images are captured at full resolution (1616x1232). 
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The parking sequence contains more than 400 images captured at 

6 fps with total length of nearly 300 meters and contains the 

featureless region specially at turns. Similarly, the other two 

sequence have length nearly 200 meters and 0.7 km respectively.

The qualitative results are presented in [Fig. 2] with GPS- 

provided ground truth in the parking environment. The results 

show that our algorithm can recover complete trajectory in the 

complex, featureless outdoor environment. To evaluate the overall 

performance of the proposed method we conducted some 

experiments with different camera settings and with state of the art 

method. cameras are used to show the advantage of adding more 

cameras to pose estimation accuracy. Three output trajectories are 

shown namely cam2 (2 cameras), ORBSLAM-mono, and the 

proposed method. The ORBSLAM-mono is run only on front 

facing camera, because it provides obvious structural information. 

The dataset is recorded from fisheye camera therefore it contains 

distortion, the data is pre-rectified for and cropped for 

ORBSLAM.

For each experiment, 1000 features per frame are extracted. 

The resultant qualitative output with different combinations of a 

camera and ORBSLAM -mono is shown in [Fig. 3] and [Fig. 4] 

[Fig. 2] Experimental setup, Top images shows the platform 

used while recording. While bottom image show the data 

recorded region in campus

[Fig. 3] Output plot of parking trajectory with GPS

[Fig. 4]. Output plot of sequence 2 with GPS trajecto

[Table 1] Qunatitative Results (Rotation and Translation error) for proposed method

Sequence Cameras
ATE (Translation) ARE (Degree)

RMSE Min Median RMSE min S.D

Parking

Cam2 1.3671 0.0056 1.1670 0.2372 0.0050 0.2805

Cam3 1.1480 0.0041 1.0894 0.1231 0.0049 0.1610

ORB-SLAM 2.2734 0.0912 1.8584 7.6301 0.0545 5.0784

Proposed 0.9121 0.0021 0.6421 0.1308 0.0026 0.1138

Building 

Cam2 5.7856 0.0288 4.4511 5.1542 0.0163 2.4732

Cam3 5.1622 0.0163 4.1281 4.7273 0.0121 2.1245

ORB-SLAM 4.8923 0.0253 4.6968 5.0123 0.0059 3.3245

Proposed 4.1312 0.0217 3.3617 2.1706 0.0041 1.1723
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respectively. The output shows that large field of view with 

different camera setup has better performance than other 

methods including limited field of view. The quantitative results 

are presented in [Table 1]. The [Table 1] shows the comparison 

between ORBSLAM, and the proposed method. The cam2 and 

cam3 are added for ablation study. The ORBSLAM is integrated 

to front facing camera only with pre-rectified and cropped 

images. The cam2 and cam3 show that only 2 and 3 cameras 

features are used for tracking and mapping. The Average 

Translation error (ATE) is used to compare the result with 

RMSE, min and S.D. The result shows that adding more views 

improves the accuracy of the system for a complex environment. 

4. Conclusion

This research proposes visual LiDAR framework for simul-

taneous localization and mapping (vSLAM) for omnidirectional 

camera LiDAR setup. The algorithm is based on feature 

detection and tracking from multiple camera setup. The feature 

depth is estimated from 3D LiDAR and remaining feature are 

triangulated from previous motion. The local and global bundle 

adjustment is performed with loop closure detection. The 

algorithm is tested on real dataset with GPS provided ground 

truth. The overall results suggest the significant improvement 

with state of the art methods.
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