• Title/Summary/Keyword: Portland cement

Search Result 1,168, Processing Time 0.022 seconds

Selection of Portland Cement for Prevention of Sulfate Attack-Part 1 Sodium Sulfate Attack (황산염침식 방지를 위한 포틀랜드시멘트의 선정-Part 1 황산나트륨 침식)

  • Kim, Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.441-447
    • /
    • 2009
  • This paper presents a detailed experimental study on the sulfate resistance of specimens made with portland cement exposed to sulfate attack. The mortar specimens were immersed in a 5% sodium sulfate solution for 360 days and regularly monitored for visual damage, compressive strength loss and expansion. In addition, at the end of 360 days, the products of sulfate attack and the mechanism of attack were investigated through X-ray diffraction, TG&DSC and scanning electron microscopy. The test results indicated that the sulfate deterioration data was ordinary portland cement > sulfate resistance portland cement > low heat portland cement. The microstructural studies indicated that the main reaction product of deterioration of the mortar specimens was the formation of ettringite, gypsum and thaumasite due to sulfate attack. For portland cement matrices, a low heat cement matrix containing the lowest C3A and silicate ratio (C/S) was beneficient against the sulfate attack.

Stabilization of As Contaminated Soils using a Combination of Hydrated Lime, Portland Cement, FeCl3·6H2O and NaOH (소석회, 포틀랜드 시멘트, FeCl3·6H2O, NaOH를 이용한 비소 오염토양의 안정화)

  • Moon, Deok-Hyun;Oh, Da-Yeon;Lee, Seung-Je;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • The purpose of this study was to investigate the effectiveness of a stabilization treatment for As contaminated soil. A combination of hydrated lime, Portland cement, $FeCl_3{\cdot}6H_2O$, and NaOH were used as stabilizing agents. The effectiveness of stabilization treatment was evaluated by the Korean Standard Test (KST) method (1N HCl extraction). Sequential extractions were performed to investigate the As distribution after treatment. Following the application of the treatment, curing periods of up to 7 and 28days were investigated. The experimental results showed that a combination of hydrated lime/Portland cement was more effective than treatments of hydrated lime or Portland cement at immobilizing As in the contaminated soil. The treatment of 25wt% hydrated lime and 5wt% Portland cement was effective in reducing As leachability less than the Korean warning standard of 20 mg/kg. However, the treatments of hydrated lime and Portland cement failed to meet the Korean warning standard even when up to 30 wt% was used. The treatment utilizing hydrated lime and $FeCl_3{\cdot}6H_2O$ was not effective in properly reducing As leachability. The addition of $FeCl_3{\cdot}6H_2O$ was negative in terms of pH condition. Moreover, the treatment with hydrated lime/NaOH was effective in reducing As leachability but not as much as hydrated lime/Portland cement. The sequential extraction results indicated that the residual phase was greatly increased upon the treatment of hydrated lime/Portland cement. It was concluded that the hydrated lime/Portland cement treatment was the best among the other combinations studied at achieving trace As concentrations.

Solidification/stabilization of Hazardous Wastes Using Cementitious Materials(III) (특수시멘트 고형화재를 이용한 지정폐기물의 고형화/안정화(III))

  • Lim, Chae-Yong;Ku, Ki-Dae;Um, Tae-Sun;Lee, Jong-Ryul;Choi, Long;Oh, Byoung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.289-294
    • /
    • 2001
  • This study concerns the cement-solidification/stabilization of the waste with high concentration heavy metals. Compressive strength and leaching test of heavy metals were evaluated for ing types of cements and the effect of the additives of Hauyne clinker and slag were also cussed. Using ordinary portland cement, rapid hardening portland cement and the cement with additives solidification materials, it shows that the strength and stability of concrete is satisfactory and superiority is in the order of rapid hardening portland cement > the cement with additives > nary portland cements.

  • PDF

Effect of the Treated Amounts with Asphalt and Carbon Black on the Early Hydration and the Physical Properties of Portland Cement (Asphalt와 Carbon Black처리양이 포틀랜드 시멘트의 물리적 특성 및 초기수화에 미치는 영향)

  • 홍원표;조헌영;황의환
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.609-616
    • /
    • 1989
  • For the development of high durable portland cement, it was tested that the some physical properties of ordinary portland cements (OPC) treated with 0.3-1.5wt.% asphalt and 0.5-1.0wt.% carbon black. From the results, the contact angles of water against cements treated with more than 0.6wt.% asphalt were increased over 80 degrees, the initial and the final setting times of cement paste were delayed about 20min. according to the every 0.3wt.% increase of asphalt. The first and the second pick heights of the hydration curve of the cement were considerabely decreased and the induction period of that was increased. And so, the cumulative hydration heat of the cement which was treated with 0.6wt.% asphalt and 0.5wt.% carbon black was lower about 10cal/g than that of ordinary portland cement during 42 hydration times.

  • PDF

Sea Water Resistance of the Concrte Deteriorated by Repeat of Immersing and Drying in Sea Water (해수의 건습반복 촉진열화에 따른 콘크리트의 내해수성)

  • 박춘근;김병권;최재웅;고만기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.307-312
    • /
    • 1997
  • The sea water resistance of cement and concrete must be compared when it used for construction in the ocean. The sea water resistance of the concrete specimens using three types of cements such as ordinary Portland cement, sulfate resistance Portland cement, blastfurnace slag cement were studied. In this study, an accelerated test for access sea water resistance by subjecting the concrete specimens to repeated cycles of concentrated sea water immersion and hot wind drying was employed. This study proved that sulfate resistance Portland cement had higher resistance for sea water.

  • PDF

Formation of Hydroxyapatite in Portland Cement Paste

  • Chung, Chul-Woo;Lee, Jae-Yong;Kim, Ji-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.68-75
    • /
    • 2014
  • In order to increase the integrity of the wellbore which is used to prevent the leakage of supercritical $CO_2$, it is necessary to develop a concrete that is strongly resistant to carbonation. In an environment where the concentration of $CO_2$ is exceptionally high, $Ca^{2+}$ ion concentration in pore solution of Portland cement concrete will drop significantly due to the rapid consumption of calcium hydroxide, which decreases the stability of the calcium silicate hydrate. In this research, calcium phosphates were used to modify Portland cement system in order to produce hydroxyapatite, a hydration product that is strongly resistant to carbonation under such an environment. According to the experimental results, calcium phosphates reacted with Portland cement to form hydroxyapatite. The formation of hydroxyapatite was verified using X-ray diffraction analyses with selective extraction techniques. When using dicalcium phosphate dihydrate and tricalcium phosphate, the 28-day compressive strength was lower than that of plain cement paste. However, the specimen with monocalcium phosphate monohydrate showed equivalent strength to that of plain cement paste.

Study of manufacturing of portland cement and sulfuric acid from waste gypsum and the utilization of anthracite coal other than cokes as reaction promotor (폐석고로부터 시멘트와 유산제조 및 기반응촉진제 탄소의 무연탄 대체에 관한 연구)

  • Lee Suk Woo
    • Cement
    • /
    • s.30
    • /
    • pp.44-50
    • /
    • 1969
  • To manufacture portland cement and sulfuric acid from gypsum has long been established in Europe. As sulfur, more Precisely sulfuric acid, is getting around shortage, it boosts hunt for alternate sources and for new fertilizer process. As the result, all

  • PDF

A Fundamcntal Study on the Propertice of High Performance Concrete using High Flowable Portland Cement (고유동포틀랜드시멘트를 이용한 고성능콘크리트의 기초적 특성에 관한연구)

  • 홍성윤;김병권;박춘근;조동원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.45-49
    • /
    • 1995
  • The fundamental properties of High Performance Concrete(HPC) were studied using high flowable portland cement which was developed at the Sangyong Cement Ind. Co.,Ltd. The results obtained are as follows. (1)The slump of HPC using high flowable portland cement maintains for 120min. (2)Ultra high strength greater than 800kg/$\textrm{cm}^2$ can be designed without using silica fume and other additives. (3)The value of drying shrinkage and adiabatic temperature rise of HPC are less than those of concrete made with OPC.

  • PDF

Analysis of Chemical Constitutions of MTA and 3 Portland Cements (EDS (Energy Dispersive Spectrometry)를 이용한 Mineral Trioxide Aggregate와 3종의 포틀랜드 시멘트의 성분비교에 관한 연구)

  • Chang, Seok-Woo;Bae, Kwang-Shik
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.1
    • /
    • pp.79-84
    • /
    • 2007
  • Mineral Trioxide Aggregate(MTA) has been used in Endodontic treatment successfully for more than 10 years. But the high cost of MTA limits its use in endodontics in Korea. Recently many studies have been done to compare MTA and Portland cements. To investigate the chemical constitutions of MTA (Proroot MTA, Tulsa Dental), Gray Portland cement (Lafarge Halla cement), White Portland cement(Union corp), and fast setting cement (SSangyong cement), we performed SEM(scanning electron microscope)(S4700, Hitachi) examination and EDS(Energy dispersive spectrometry)(emax, Horiba) analysis. SEM examination and EDS analysis were committed to and performed in SNU DRI (Seoul National University Dental Research Institute). We found that particles of MTA were relatively round, uniform in size, and compactly packed compared to Portland cements. Chemical constitutions of MTA, GPC, WPC and FSC were similar. It was shown that MTA contains much BiO2 . MTA and WPC showed less heavy metals such as Fe and Mg compared to GPC and FSC. FSC showed remarkably high aluminum content.

An Experimental Comparison of the Fluidity of G-class cement with Portland cement (지열발전을 위한 지열정 시멘트용 G-class시멘트와 일반 포틀랜드시멘트와의 유동성 비교실험)

  • Jeon, Jong-Ug;Won, Jong-Muk;Choi, Hang-Seok
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • The G-class cement is usually used for geothermal well grouting to protect a steel casing which is equipped in a geothermal well to transfer geothermal water from deep subsurface to ground surface. In geothermal grouting process, obtaining appropriate fluidity is extremely important in order to fill cement grout flawlessly. In this paper, a series of the V-funnel and Slump Flow test was performed on both of the Portland cement and the G-class cement in order to compare fluidity and filling ability of those kind of cements. In the result of V-funnel test, the fluidity of G-class cement was evaluated much better than the Portland cement at the water/cement ratio of 0.8. In the case of Slump Flow test, the fluidity of G- class cement was estimated slightly better than the Portland cement at both the water/cement ratio of 0.55 and 0.8. Even though the initial fluidity and filling ability of G-class cement were relatively higher than the Portland cement, the results could be considerably changed with time. The results show that the fluidity and filling ability for geothermal well cementation can be properly controlled with water content and additives for adverse geothermal well environment.