• Title/Summary/Keyword: Portfolio Optimization

Search Result 69, Processing Time 0.029 seconds

Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution (GPD 기반의 유전자 알고리즘을 이용한 포트폴리오 최적화)

  • Kim, Hyundon;Kim, Hyun Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1479-1494
    • /
    • 2015
  • Since the Markowitz's mean-variance framework for portfolio analysis, the topic of portfolio optimization has been an important topic in finance. Traditional approaches focus on maximizing the expected return of the portfolio while minimizing its variance, assuming that risky asset returns are normally distributed. The normality assumption however has widely been criticized as actual stock price distributions exhibit much heavier tails as well as asymmetry. To this extent, in this paper we employ the genetic algorithm to find the optimal portfolio under the Value-at-Risk (VaR) constraint, where the tail of risky assets are modeled with the generalized Pareto distribution (GPD), the standard distribution for exceedances in extreme value theory. An empirical study using Korean stock prices shows that the performance of the proposed method is efficient and better than alternative methods.

A Study on Portfolios Using Simulated Annealing and Tabu Search Algorithms (시뮬레이티드 어닐링와 타부 검색 알고리즘을 활용한 포트폴리오 연구)

  • Woo Sik Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.467-473
    • /
    • 2024
  • Metaheuristics' impact is profound across many fields, yet domestic financial portfolio optimization research falls short, particularly in asset allocation. This study delves into metaheuristics for portfolio optimization, examining theoretical and practical benefits. Findings indicate portfolios optimized via metaheuristics outperform the Dow Jones Index in Sharpe ratios, underscoring their potential to enhance risk-adjusted returns significantly. Tabu search, in comparison to Simulated Annealing, demonstrates superior performance by efficiently navigating the search space. Despite these advancements, practical application remains challenging due to the complexities in metaheuristic implementation. The study advocates for broader algorithmic exploration, including population-based metaheuristics, to refine asset allocation strategies further. This research marks a step towards optimizing portfolios from an extensive array of financial assets, aiming for maximum efficacy in investment outcomes.

Enhanced Indexation Strategy with ETF and Black-Litterman Model (ETF와 블랙리터만 모형을 이용한 인핸스드 인덱스 전략)

  • Park, Gigyoung;Lee, Youngho;Seo, Jiwon
    • Korean Management Science Review
    • /
    • v.30 no.3
    • /
    • pp.1-16
    • /
    • 2013
  • In this paper, we deal with an enhanced index fund strategy by implementing the exchange trade funds (ETFs) within the context of the Black-Litterman approach. The KOSPI200 index ETF is used to build risk-controlled portfolio that tracks the benchmark index, while the proposed Black-Litterman model mitigates estimation errors in incorporating both active investment views and equilibrium views. First, we construct a Black-Litterman model portfolio with the active market perspective based on the momentum strategy. Then, we update the portfolio with the KOSPI200 index ETF by using the equilibrium return ratio and weighted averages, while devising optimization modeling for improving the information ratio (IR) of the portfolio. Finally, we demonstrate the empirical viability of the proposed enhanced index strategies with KOSPI 200 data.

The Optimal Mean-Variance Portfolio Formulation by Mathematical Planning (Mean-Variance 수리 계획을 이용한 최적 포트폴리오 투자안 도출)

  • Kim, Tai-Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.63-71
    • /
    • 2009
  • The traditional portfolio optimization problem is to find an investment plan for securities with reasonable trade-off between the rate of return and the risk. The seminal work in this field is the mean-variance model by Markowitz, which is a quadratic programming problem. Since it is now computationally practical to solve the model, a number of alternative models to overcome this complexity have been proposed. In this paper, among the alternatives, we focus on the Mean Absolute Deviation (MAD) model. More specifically, we developed an algorithm to obtain an optimal portfolio from the MAD model. We showed mathematically that the algorithm can solve the problem to optimality. We tested it using the real data from the Korean Stock Market. The results coincide with our expectation that the method can solve a variety of problems in a reasonable computational time.

Investment strategy using AESG rating: Focusing on a Korean Market

  • KIM, Eunchong;JEONG, Hanwook
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • Purpose: This study used ESG grade, but defined AESG, adjusted to the size of a company and examines whether it can be used as an investment strategy. Research design, data and methodology: The analysis sample in this study is a company that has given an ESG rating among companies listed on the Korea Stock Exchange. We examine the results through portfolio analysis and Fama-macbeth regression analysis. Results: As result of examining the long-only performance and the long-short performance by constructing quintile portfolios, it was observed that a significant positive return was shown. It was observed that there was an alpha that could not be explained in asset pricing models. Also, AESG had a return prediction effect in the result of a Fama-Macbeth regression that controlled corporate characteristic variables in individual stocks. Next, we confirmed AESG's usage through various portfolio composition. In the portfolio optimization, the Risk Efficient method was the most superior in terms of sharpe ratio and the construct multi-factor model with Value, Momentum and Low Vol showed statistically significant performance improvement. Conclusions: The results of this study suggest that it can be helpful in ESG investment to reflect the ESG rating of relatively small companies more through the scale adjustment of the ESG rating (i.e.AESG).

A CONSUMPTION, PORTFOLIO AND RETIREMENT CHOICE PROBLEM WITH NEGATIVE WEALTH CONSTRAINTS

  • ROH, KUM-HWAN
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.293-300
    • /
    • 2020
  • In this paper we study an optimal consumption, investment and retirement time choice problem of an investor who receives labor income before her voluntary retirement. And we assume that there is a negative wealth constraint which is a general version of borrowing constraint. Using convex-duality method, we provide the closed-form solutions of the optimization problem.

Minimizing the Risk of an Open Computing Environment Using the MAD Portfolio Optimization (최적포트폴리오 기법을 이용한 개방형 전산 환경의 안정성 확보에 관한 연구)

  • Kim, Hak-Jin;Park, Ji-Hyoun
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.15-31
    • /
    • 2009
  • The next generation IT environment is expected to be an open computing environment based on Grid computing technologies, which allow users to access to any type of computing resources through networks. The open computing environment has benefits in aspects of resource utilization, collaboration, flexibility and cost reduction. Due to the variation in performance of open computing resources, however, resource allocation simply based on users' budget and time constraints often fails to meet the Service Level Agreement(SLA). This paper proposes the Mean-Absolute Deviation(MAD) portfolio optimization approach, in which service brokers consider the uncertainty of performance of resources, and compose resource portfolios that minimize the uncertainty. In order to investigate the effect of this approach, we simulate an open computing environment with varying uncertainty levels, users' constraints, and brokers' optimization strategies. The simulation result concludes threefolds. First, the MAD portfolio optimization improves the success ratio of delivering the required performance to users. Second, the success ratio depends on the accuracy in predicting the variability of performance. Thirdly, the measured variability can also help service brokers expand their service to cost-critical users by discounting the access cost of open computing resources.

  • PDF

Approximate Dynamic Programming-Based Dynamic Portfolio Optimization for Constrained Index Tracking

  • Park, Jooyoung;Yang, Dongsu;Park, Kyungwook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2013
  • Recently, the constrained index tracking problem, in which the task of trading a set of stocks is performed so as to closely follow an index value under some constraints, has often been considered as an important application domain for control theory. Because this problem can be conveniently viewed and formulated as an optimal decision-making problem in a highly uncertain and stochastic environment, approaches based on stochastic optimal control methods are particularly pertinent. Since stochastic optimal control problems cannot be solved exactly except in very simple cases, approximations are required in most practical problems to obtain good suboptimal policies. In this paper, we present a procedure for finding a suboptimal solution to the constrained index tracking problem based on approximate dynamic programming. Illustrative simulation results show that this procedure works well when applied to a set of real financial market data.

ROBUST PORTFOLIO OPTIMIZATION UNDER HYBRID CEV AND STOCHASTIC VOLATILITY

  • Cao, Jiling;Peng, Beidi;Zhang, Wenjun
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1153-1170
    • /
    • 2022
  • In this paper, we investigate the portfolio optimization problem under the SVCEV model, which is a hybrid model of constant elasticity of variance (CEV) and stochastic volatility, by taking into account of minimum-entropy robustness. The Hamilton-Jacobi-Bellman (HJB) equation is derived and the first two orders of optimal strategies are obtained by utilizing an asymptotic approximation approach. We also derive the first two orders of practical optimal strategies by knowing that the underlying Ornstein-Uhlenbeck process is not observable. Finally, we conduct numerical experiments and sensitivity analysis on the leading optimal strategy and the first correction term with respect to various values of the model parameters.

Reinforcement learning portfolio optimization based on portfolio theory (강화학습을 이용한 포트폴리오 투자 프로세스 최적화에 대한 연구)

  • Hyeong-Jin Son;Lim Donhui;Young-Woo Han
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.961-962
    • /
    • 2023
  • 포트폴리오 구성문제는 과거부터 현재까지 많은 연구가 이루어지고 있다. 현재는 강화학습을 통해 포트폴리오를 구성하는 연구가 많이 진행되고있다. 포트폴리오를 구성함에 있어 종목선택과 각 종목을 얼만큼 투자할 것인지는 둘 다 중요한 문제이다. 본 연구에서는 과거부터 많이 사용해오던 방식을 차용하여 강화학습 방법과 접목시켰고 이를 통해 설명력이 높은 모델을 만들려고 노력하였다. 강화학습에 사용한 모델은 PPO(Proximal Policy Optimization)을 기본으로 하였고 인공신경망은 LSTM을 활용하였다. 실험결과 실험 기간 동안(2023년 3월 30일 부터 108 영업일 까지)의 코스피 수익률은 5%인데 반해 본 연구에서 제시한 모델의 수익률은 평균 약 9%를 기록했다.