• Title/Summary/Keyword: Portal image

Search Result 148, Processing Time 0.028 seconds

A Study on Characteristics of A Diode Radiation Sensor for Portal Image of Therapy Radiation (치료방사선 Portal Image를 위한 다이오드 방사선 센서의 특성에 관한 연구)

  • Lee, Dong-Hun;Kwon, Jang-Woo;Hong, Seung-Hong
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.5
    • /
    • pp.11-20
    • /
    • 1996
  • In this paper, the characteristics of therapy radiation diode sensors have been studied by using therapy radiation from the MM22 microtron accelerator. The linearity, reproducibility and error ratio were measured for feasibility as a radiation detector. Energy dependence, sensitivity change after a amount of irradiation and output value according to a number of diodes were also measured for same purpose. We have formed pulse shaping of diode signal with nuclear instruments for portal image reconstruction. The percent depth dose ratio according to field size and depth was compared with that of the detector of a ion chamber. Using thirteen silicon diodes, we can directly read diode outputs on a computer monitor after A/D conversion with 16 channels analog to digital conversion board with 12 bit resolution. The possibility for portal image with diodes has been suggested from output comparison between output value with a human phantom and that without a human phantom.

  • PDF

Assessment of Set-up Accuracy in Tangential Breast Treatment Using Electronic Portal Imaging Device (EPID 영상을 이용한 유방암 접선조사의 정확성 평가)

  • Lee, Byung-Koo;Kang, Soo-Man
    • Journal of radiological science and technology
    • /
    • v.35 no.3
    • /
    • pp.249-254
    • /
    • 2012
  • The aim of this study was to investigate the setup accuracy for tangential breast treatment patients using electronic portal image and 2-D reconstruction image Twenty two patients undergoing tangential breast treatment. To explore the setup accuracy, distances between chosen landmarks were taken as reference parameters. The difference between measured reference parameters on simulation films and electronic portal images (EPIs) was calculated as the setup error. A total of 22 simulation films and 110 EPIs were evaluated. In the tangential fields, the calculated reference parameters were the central lung distance (CLD), central soft-tissue distance (CSTD), and above lung distance (ALD), below lung distance (BLD). In the medial tangential field, the average difference values for these parameters were 1.0, -6.4, -2.1 and 2.0, respectively; and the ${\sigma}$ values were 1.5, 2.3, 4.1 and 1.1, respectively. In the lateral tangential field, the average difference values for these parameters were -1.5, -4.3, -2.7 and -1.3, respectively; and the ${\sigma}$ values were 3.3, 2.1, 2.9 and 2.5, respectively. CLD, CSTD, ALD and BLD in the tangential fields are easily identifiable and are helpful for detecting setup errors using EPIs in patients undergoing tangential breast radiotherapy treatment.

A Study on Evaluation of Portal Vein by Utilizing MIP Reconstruction in the PC Environment after Abdomen CT of Hepatic Artery Embolization Patients (간동맥 색전술 환자의 복부단층촬영 후 PC 환경에서 MIP재구성영상을 이용한 간문맥평가에 관한 고찰)

  • Kim, Young-Keun;Jang, Young-Ill;Heo, Young-Nam
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.13-17
    • /
    • 2001
  • When most patients are diagnosed with the quiet progressed hepatoma which often would make the operation impossible, the Interventional Radiology hepatic artery embolization is an extremely useful method for such patients. An existence of the malfunction is evaluated by gaining a portal vein image as a delayed phase image after injecting a contrast media into the superior mesenteric artery. However, it is difficult to make a definite judgement due to the extended exposure time with the peristalsis and the intestine gas obstructing the sharpness of the image when the Patient exposure time increases and due to the increased usage of contrast media and its side effect. The portal vein can be evaluated by obtaining the MIP image after reconstructing a 3-dimensional personal computer setting using the 2-dimensional from an enhancement abdomen CT image that is almost a requisite in operation to a hepatoma patient. Such method nay prevent a decrease in the quality of image based upon the time delay and intestine gas; also, because the patient exposure dose and contrast media usage may be reduced, it is a new, valuable way to decide the operational matter of hepatic artery embolization on a pre-angiography.

  • PDF

A Study on Characteristics of Diode Detecter for Verification of Radiation Therapy (방사선 치료위치 검증을 위한 다이오드 검출기의 특성에 관한 연구)

  • 이동훈;김윤종;지영훈;이동한;홍승홍
    • Proceedings of the IEEK Conference
    • /
    • 2000.06e
    • /
    • pp.106-109
    • /
    • 2000
  • The diode characteristics for therapy radiation sensor have been studied by irradiating therapy radiation from the MM22 microtron accelerator. Signal processing has been performed in the pulse mode which can process the signal fast. We have designed integrator, peak detector and synchronization circuit to detect diode signal in the pulse mode for implementation of portal image. We also read the diode signal by A/D board and displayed the peak value with LabView program. Because the quality of portal image obtained by film in the case of therapy radiation is much worse than that of diagnostic film, Digital radiography system by rectifier diode detector was suggested for portal Image.

  • PDF

A Study on the model of CCTV Image Information Integration portal (CCTV 영상자료 통합포털 구축 모델에 관한 연구)

  • Kang, Poo-Reum;Kim, Kui-Nam J.
    • Convergence Security Journal
    • /
    • v.12 no.2
    • /
    • pp.43-51
    • /
    • 2012
  • CCTV would be the effective way in the prevention of abuse, as well as recorded image information evidence of the crime as a significant legal effect. But recorded image information As evidence by utilizing the Complaint/complaint handling, and administrative business processes that are currently operating offline procedural complexity and unnecessary time appear costly, privacy remains an issue to be solved, etc. Runoff. In this paper, incidence rate of offline business processing phase to solve the problems proposed to build unified portal for CCTV image information and the existing studies on the effectiveness of electronic civil service system, previous studies by analyzing e-government in accordance with laws and privacy laws, CCTV image information portal deployment model is applied to data integration occurs are trying to solve the problem effectively.

Microvascular Contrast Image in Portal Veins of Rat using Micro-CT (마이크로 CT를 이용한 BALB/C(흰쥐) 간문맥의 미세혈관 조영 영상)

  • Lee, Sang-Ho;Lim, Cheong-Hwan;Jung, Hong-Rayng;Han, Beom-Hee;Mo, Eun-Hee;Chai, Kyu-Yun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.259-266
    • /
    • 2010
  • The study focuses on the value of Micro CT, a high resolution X-ray imaging device, by using it on rats to observe the overall portal vein image of the liver and the microvasculature of each lobes, visualize the 4 segmental lobes and acquire 3D image of the microvasculature through the reconstruction of sectional image data. Less of the damage to liver of the 5 mice, the device was able to separate the liver into 4 segmental lobes and displayed the 4 portal vein microvasculature in 2D. By using the 3D MIP technique, observation of the whole portal vein system microvasculature in 3D image was made possible along with each of the portal vein segment's branches until the 6th branch. Measured the size of 6branch, the average was measured at 1branch : $0.51mm{\pm}0.08$, 2 branch : $0.32mm{\pm}0.12$, 3 branch : $0.23mm{\pm}0.11$, 4 branch : $0.19mm{\pm}0.08$, 5 branch : $0.13mm{\pm}0.06$, 6 branch : $70.5{\mu}m{\pm}14.1$. The 3D image and the images of the microvasculatures in the result of study proved that the Micro-CT can be considered many useful device in obtaining high resolution images.

Automatic Multileaf Collimation Quality Assurance for IMRT using Electronic Portal Imaging

  • Jin, Ho-Sang;Jason W. Sohn;Suh, Tae-Suk
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.305-308
    • /
    • 2002
  • More complex radiotherapy techniques using multi leaf collimation(MLC) such as intensity-modulated radiation therapy(IMRT) has been increasing the significance of verification of leaf position and motion. Due to the reliability and robustness, quality assurance(QA) of MLC is usually performed with portal films. However, the advantage of ease of use and capability of providing digital data of electronic portal imaging devices(EPIDs) have attracted many attentions as alternatives of films for routine quality assurance in spite of the concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In our work, the method of routine QA of MLC using electronic portal imaging(EPI) was developed. The verification of availability of EPI images for routine QA was performed by comparison with those of the portal films which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed test patterns of dynamic MLC were applied to image acquisition. Quantitative off-line analysis using edge detection algorithm enhanced the verification procedure in addition to on-line qualitative visual assessment. In conclusion, the EPI is available enough for routine QA with the accuracy of portal films.

  • PDF

Enhancement of Image Contrast in Linacgram through Image Processing (전산처리를 통한 Linacgram의 화질개선)

  • Suh, Hyun-Suk;Shin, Hyun-Kyo;Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.18 no.4
    • /
    • pp.345-354
    • /
    • 2000
  • Purpose : Conventional radiation therapy Portal images gives low contrast images. The purpose of this study was to enhance image contrast of a linacgram by developing a low-cost image processing method. Materials and Methods : Chest linacgram was obtained by irradiating humanoid Phantom and scanned using Diagnostic-Pro scanner for image processing. Several types of scan method were used in scanning. These include optical density scan, histogram equalized scan, linear histogram based scan, linear histogram independent scan, linear optical density scan, logarithmic scan, and power square root scan. The histogram distribution of the scanned images were plotted and the ranges of the gray scale were compared among various scan types. The scanned images were then transformed to the gray window by pallette fitting method and the contrast of the reprocessed portal images were evaluated for image improvement. Portal images of patients were also taken at various anatomic sites and the images were processed by Gray Scale Expansion (GSE) method. The patient images were analyzed to examine the feasibility of using the GSE technique in clinic. Results :The histogram distribution showed that minimum and maximum gray scale ranges of 3192 and 21940 were obtained when the image was scanned using logarithmic method and square root method, respectively. Out of 256 gray scale, only 7 to 30$\%$ of the steps were used. After expanding the gray scale to full range, contrast of the portal images were improved. Experiment peformed with patient image showed that improved identification of organs were achieved by GSE in portal images of knee joint, head and neck, lung, and pelvis. Conclusion :Phantom study demonstrated that the GSE technique improved image contrast of a linacgram. This indicates that the decrease in image quality resulting from the dual exposure, could be improved by expanding the gray scale. As a result, the improved technique will make it possible to compare the digitally reconstructed radiographs (DRR) and simulation image for evaluating the patient positioning error.

  • PDF

A of Radiation Field with a Developed EPID

  • Y.H. Ji;Lee, D.H.;Lee, D.H.;Y.K. Oh;Kim, Y.J.;C.K. Cho;Kim, M.S.;H.J. Yoo;K.M. Yang
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2003.09a
    • /
    • pp.67-67
    • /
    • 2003
  • It is crucial to minimize setup errors of a cancer treatment machine using a high energy and to perform precise radiation therapy. Usually, port film has been used for verifying errors. The Korea Cancer Center Hospital (KCCH) has manufactured digital electronic portal imaging device (EPID) system to verify treatment machine errors as a Quality Assurance (Q.A) tool. This EPID was consisted of a metal/fluorescent screen, 45$^{\circ}$ mirror, a camera and an image grabber and could display the portal image with near real time KIRAMS has also made the acrylic phantom that has lead line of 1mm width for ligh/radiation field congruence verification and reference points phantom for using as an isocenter on portal image. We acquired portal images of 10$\times$10cm field size with this phantom by EPID and portal film rotating treatment head by 0.3$^{\circ}$, 0.6$^{\circ}$ and 0.9$^{\circ}$. To check field size, we acquired portal images with 18$\times$18cm, 19$\times$19cm and 20$\times$20cm field size with collimator angle 0$^{\circ}$ and 0.5$^{\circ}$ individually. We have performed Flatness comparison by displaying the line intensity from EPID and film images. The 0.6$^{\circ}$ shift of collimator angle was easily observed by edge detection of irradiated field size on EPID image. To the extent of one pixel (0.76mm) difference could be detected. We also have measured field size by finding optimal threshold value, finding isocenter, finding field edge and gauging distance between isocenter and edge. This EPID system could be used as a Q.A tool for checking field size, light/radiation congruence and flatness with a developed video based EPID.

  • PDF