• Title/Summary/Keyword: Portable environment monitoring system

Search Result 35, Processing Time 0.028 seconds

A Study on the Sensor Module System for Real-Time Risk Environment Management (실시간 위험환경 관리를 위한 센서 모듈시스템 연구)

  • Cho, Young Chang;Kwon, Ki Jin;Jeong, Jong Hyeong;Kim, Min Soo
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.953-958
    • /
    • 2018
  • In this study, a portable detection system was developed that can detect harmful gas and signals simultaneously in an enclosed space of industrial sites and underground facilities. The developed system is a sensor module for gas detection, a patch type 1 channel small ECG sensor, a module for three-axial acceleration detection sensor, and a system for statistics. In order to verify the performance of the system modules, the digital resolution, signal frequency, output voltage, and ultra-small modules were evaluated. As a result of the performance of the developed system, the digital resolution was 300 (rps) and the signal amplification gain was 500 dB or more, and the ECG module was manufactured with $50mm{\times}10mm{\times}10mm$ to increase patch utilization. It is believed that the product of this research will be valuable if it is used as an IoT-based management system for real-time monitoring of industrial workers.

Hydrogeochemistry and Statistical Analysis of Water Quality for Small Potable Water Supply System in Nonsan Area (논산지역 마을상수도 수질의 수리지화학 및 통계 분석)

  • Ko, Kyung-Seok;Ahn, Joo-Sung;Suk, Hee-Jun;Lee, Jin-Soo;Kim, Hyeong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.72-84
    • /
    • 2008
  • This study was carried out to provide proper management plans for small portable water supply system in the Nonsan area through water quality monitoring, hydrogeochemical investigation and multivariate statistical analyses. Nonsan area is a typical rural area heavily depending on small water supply system for portable usage. Geology of the area is composed of granite dominantly along with metasedimentary rocks, gneiss and volcanic rocks. The monitoring results of small portable water supply system showed that 13-21% of groundwaters have exceeded the groundwater standard for drinking water, which is 5 to 8 times higher than the results from the whole country survey (2.5% in average). The major components exceeding the standard limits are nitrate-nitrogen, turbidity, total coliform, bacteria, fluoride and arsenic. High nitrate contamination observed at southern and northern parts of the study area seems to be caused by cultivation practices such as greenhouses. Although Ca and $HCO_3$ are dominant species in groundwater, concentrations of Na, Cl and $NO_3$ have increased at the granitic area indicating anthropogenic contamination. The groundwaters are divided into 2 groups, granite and metasedimentary rock/gneiss areas, with the second principal component presenting anthropogenic pollution by cultivation and residence from the principal components analysis. The discriminant analysis, with an error of 5.56% between initial classification and prediction on geology, can explain more clearly the geochemical characteristics of groundwaters by geology than the principal components analysis. Based on the obtained results, it is considered that the multivariate statistical analysis can be used as an effective method to analyze the integrated hydrogeochemical characteristics and to clearly discriminate variations of the groundwater quality. The research results of small potable water supply system in the study area showed that the groundwater chemistry is determined by the mixed influence of land use, soil properties, and topography which are controlled by geology. To properly control and manage small water supply systems for central and local governments, it is recommended to construct a total database system for groundwater environment including geology, land use, and topography.

Decision Support System to Detect Unauthorized Access in Smart Work Environment (스마트워크 환경에서 이상접속탐지를 위한 의사결정지원 시스템 연구)

  • Lee, Jae-Ho;Lee, Dong-Hoon;Kim, Huy-Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.4
    • /
    • pp.797-808
    • /
    • 2012
  • In smart work environment, a company provides employees a flexible work environment for tele-working using mobile phone or portable devices. On the other hand, such environment are exposed to the risks which the attacker can intrude into computer systems or leak personal information of smart-workers' and gain a company's sensitive information. To reduce these risks, the security administrator needs to analyze the usage patterns of employees and detect abnormal behaviors by monitoring VPN(Virtual Private Network) access log. This paper proposes a decision support system that can notify the status by using visualization and similarity measure through clustering analysis. On average, 88.7% of abnormal event can be detected by this proposed method. With this proposed system, the security administrator can detect abnormal behaviors of the employees and prevent account theft.

Monitoring System for Optimized Power Management with Indoor Sensor (실내 전력관리 시스템을 위한 환경데이터 인터페이스 설계)

  • Kim, Do-Hyeun;Lee, Kyu-Tae
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.127-133
    • /
    • 2020
  • As the usages of artificial intelligence is increased, the demand to algorithms for small portable devices increases. Also as the embedded system becomes high-performance, it is possible to implement algorithms for high-speed computation and machine learning as well as operating systems. As the machine learning algorithms process repetitive calculations, it depend on the cloud environment by network connection. For an stand alone system, low power consumption and fast execution by optimized algorithm are required. In this study, for the purpose of smart control, an energy measurement sensor is connected to an embedded system, and a real-time monitoring system is implemented to store measurement information as a database. Continuously measured and stored data is applied to a learning algorithm, which can be utilized for optimal power control, and a system interfacing various sensors required for energy measurement was constructed.

Development of PC-based Auto Inspection System for Smart Battery Protection Circuit Module (PC기반의 스마트 배터리 보호모듈 자동 검사 시스템 개발)

  • Yoon, Tae-Sung;Jang, Gi-Won;Park, Ju-No;Lee, Jeong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.275-277
    • /
    • 2005
  • In a lithium-ion battery which is being used in many portable electronic goods, electrolyte is disaggregated and then the gas is happened when electric charging volt is over the 4.5V. So, the pressure on the safety valve is increased and electrolyte is leaked out in the cell. It leads to the risk of explosion. On the other hand, in the case which the battery is discharged excessively, the negative pole is damaged and the performance of the battery is deteriorated. The protection module of a lithium-ion battery is used for preventing such risk and the inspection system is needed to check the performance of such protection module. In this research, a PC-based auto inspection system is developed for the inspection of a battery protection module using Dallas chipset. In the inspection system, AVRl28 chip is used as a controller and the communication protocol is developed for the data communication between the protection module and the AVR128 chip. And GPIB interface is used for the control of measuring devices. Also, MMI environment is developed using LabView for convenient monitoring by the tester.

  • PDF

Review of Environmental Health Research through Crowdsourcing (크라우드소싱(crowdsourcing)을 이용한 환경보건 연구 방법의 고찰)

  • Lee, Boram;Lee, Kiyoung
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.3
    • /
    • pp.171-177
    • /
    • 2014
  • Background: The development of technology can be beneficial for the life and health of human society. Crowdsourcing refers to drawing upon a large pool of individuals in order to seek services, ideas, or other contributions. With the development of information communication technology, crowdsourcing is able to provide powerful results in environmental health research. Methods: We searched 'crowdsourcing' and 'citizen science' for keywords related to the environmental health field and only selected journal articles and conference proceedings material, such as research reports and WHO reports. Results: This paper reviewed environmental health research using crowdsourcing. Examples of such research based on crowdsourcing included practices in environmental disasters, noise monitoring, global positioning system (GPS) technology, smart phones, attached portable devices and information delivery by web. Crowdsourcing methods can provide notably distinct approaches for future environmental health research. However, it is also important to protect personal information whenever crowdsourcing is applied to data generation and information dissemination. Conclusion: We expect that this review may provide useful information for the development of new environmental health research methods using crowdsourcing and citizen science.

An Experimental Study for Optimal RF Output Power Estimation of Wireless Sensor Network (건물 용도별 무선계측 최적 전파강도 산정을 위한 실험적 연구)

  • Yee, Jurng-Jae;Choi, Seok-Yong;Cho, Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.462-467
    • /
    • 2009
  • Researches and developments on BEMS are performed world-widely through sustainable management in various conditions. However, there are many obstacles to adapt the system in existing buildings because it needs highly expensive equipments, which are designed for newly built buildings, to install. Therefore, there are numerous limits exist when applying the BEMS in established buildings. The purpose of this study estimates the optimization of RF output power in WSN(Wireless Sensor Networks), which is the essential technology to develop PEMS. The results of this study is as follows ; 1) Applying WSN technique in buildings was possible. 2) As RF output power increases, the number of relay node reduced, therefore, the WSN showed more stability. 3) When estimating optimal RF output power in school, it should be considered between the number of relay node and RF output power. 4) Considering battery consumption and possibility of reception, the best suited RF output power is -20dbm in apartment house.

Indoor Air Quality Monitoring Systems in the IoT Environment (IoT 기반 실내 공기질 모니터링 시스템)

  • Oh, Chang-Se;Seo, Min-Seok;Lee, Jung-Hyuck;Kim, Sang-Hyun;Kim, Young-Don;Park, Hyun-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.5
    • /
    • pp.886-891
    • /
    • 2015
  • Recently, The World Health Organization announced that harms human health because of air pollution that are emerging as threats to human health worldwide. according to the, Seoul, 2011 According to a July 2014 - Public Facilities indoor air quality measurements, were examined to be in violation of indoor air pollution standards in most multi-use facility. Indoor air pollution resulting from this is present in the paper, and cause disease, such as pulmonary disease, asthma, bronchitis and to In this connection, the measurement of indoor air quality by using the environment sensor, analyzing the measured data to generate an actuator signal required for ventilation and improve indoor air quality by implementing a monitoring system with real-time measurement, autonomously managing the air quality in our lives so that it can be.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Performance Evaluation of a Portable GC for Real-time Monitoring of Volatile Organic Compounds (휘발성 유기화합물의 실시간 모니터링을 위한 휴대형 GC의 성능 평가)

  • You, Dong-Wook;Seon, Yeong-Sik;Oh, Jun-Sik;Yi, Bongyoon;Kim, Hyun Sik;Jung, Kwang-Woo
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.6
    • /
    • pp.327-333
    • /
    • 2020
  • Performance of a portable GC that can be utilized for the real time determination of volatile organic compounds in air was evaluated. It employs purified/compressed ambient air as the carrier gas eliminating the need for high pressure gas tanks. The compact system with dimensions of 35 × 26 × 15 ㎤ and weight of 5 kg is powered by either a 24 V DC external adapter or battery pack. Chromatograms of the mixture sample including benzene, toluene, ethylbenzene, and oxylene at concentrations of 1 ppmv and 20 ppmv represent a good reproducibility: 3.79% and 0.48% relative standard deviations (RSDs) for peak area variations; 0.40% and 0.08% RSDs for retention times. The method detection limit was 0.09 ppmv. A 30 m long, 0.28 mm I.D. column operated at an optimal condition yielded a peak capacity of 61 with good resolution for a 10 min isothermal analysis. The relative standard deviations (RSD) of the peak area variations and retention times during consecutive measurements over 27 h were less than 2.4%RSD and 0.5%RSD, respectively. Thus, this instrument makes it suitable for continuous and field analysis of low-concentration VOC mixtures in the indoor/outdoor environment as well as the spillage accident of hazardous chemicals.