• Title/Summary/Keyword: Porphyridium

Search Result 7, Processing Time 0.024 seconds

Effect of Culture Conditions on Production of Polysaccharides and Growth Rate of Porphyridium cruentum (Porphyridium cruentum의 성장 및 당질 생산에 미치는 배양 조건의 영향)

  • Joo, Dong-Sik;Choi, Soon-Yeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.41 no.6
    • /
    • pp.446-451
    • /
    • 2008
  • The growth of Porphyridium cruentum and its porphyran polysaccharide production were measured as functions of light intensity, temperature, light quality (fluorescent, blue, red, and green) and nitrate concentration. The optimum light intensity, temperature, and nitrate concentration for the growth of Porphyridium cruentum and for its polysaccharide production were 1,400 lx, $25^{\circ}C$, and 0.03%, respectively. The maximum cell concentration and polysaccharide content under the optimum conditions were 1.95 and 0.23 mg/mL, respectively. Light quality did not influence growth or polysaccharide production. The best results for growth and polysaccharide production were obtained using fluorescent light.

Light and Electron Microscopic Observations on Erythrolobus coxiae gen.et sp.nov. (Porphyridiophyceae, Rhodophyta) from Texas U.S.A.

  • Scott , Joseph L.;Baca, Bart;Ott, Franklyn D.;West, John A.
    • ALGAE
    • /
    • v.21 no.4
    • /
    • pp.407-416
    • /
    • 2006
  • Low molecular weight carbohydrates, phycobilin pigments and cell structure using light and transmission electron microscopy were used to describe a new genus of unicellular red algae, Erythrolobus coxiae (Porphyridiales, Porphyrideophyceae, Rhodophyta). The nucleus of Erythrolobus is located at the cell periphery and the pyrenoid, enclosed by a cytoplasmic starch sheath, is in the cell center. The pyrenoid matrix contains branched tubular thylakoids and four or more chloroplast lobes extend from the pyrenoid along the cell periphery. A peripheral encircling thylakoid is absent. The Golgi apparatus faces outward at the cell periphery and is always associated with a mitochondrion. Porphyridium and Flintiella, the other members of the Porphyrideophyceae, also lack a peripheral encircling thylakoid and have an ER-mitochondria-Golgi association. The low molecular weight carbohydrates digeneaside and floridoside are present, unlike both Porphyridium and Flintiella, which have only floridoside. The phycobilin pigments B-phycoerythrin, R-phycocyanin and allophycocyanin are present, similar to Porphyridium purpureum. The cells have a slow gliding motility without changing shape and do not require substrate contact. The ultrastructural features are unique to members of the Porphyrideophyceae and recent molecular analyses clearly establish the validity of this new red algal class and the genus Erythrolobus.

Improvement of Unsaturated Fatty Acid Production from Porphyridium cruentum Using a Two-Phase Culture System in a Photobioreactor with Light-Emitting Diodes (LEDs)

  • Kim, So Hee;Lee, Ui Hun;Lee, Sang Baek;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • In this study, the culture conditions for Porphyridium cruentum were optimized to obtain the maximum biomass and lipid productions. The eicosapentaenoic acid content was increased by pH optimization. P. cruentum was cultured with modified F/2 medium in 14-L photobioreactors using a two-phase culture system, in which the green (520 nm) and red (625 nm) light-emitting diodes (LEDs) were used during the first and second phases for biomass production and lipid production, respectively. Various parameters, including aeration rate, light intensity, photoperiod, and pH were optimized. The maximum biomass concentration of 0.91 g dcw/l was obtained with an aeration rate of 0.75 vvm, a light intensity of 300 μmol m-2s-1, and a photoperiod of 24:0 h. The maximum lipid production of 51.8% (w/w) was obtained with a light intensity of 400 μmol m-2s-1 and a photoperiod of 18:6 h. Additionally, the eicosapentaenoic acid and unsaturated fatty acid contents reached 30.6% to 56.2% at pH 6.0.

Toxicity evaluation based on particle size, contact angle and zeta potential of SiO2 and Al2O3 on the growth of green algae

  • Karunakaran, Gopalu;Suriyaprabha, Rangaraj;Rajendran, Venkatachalam;Kannan, Narayanasamy
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.243-255
    • /
    • 2015
  • In this investigation, ecotoxicity of nano and micro metal oxides, namely silica ($SiO_2$) and alumina ($Al_2O_3$), on the growth of green algae (Porphyridium aerugineum Geitler) is discussed. Effects of nano and micro particles on the growth, chlorophyll content and protein content of algae are analysed using standard protocols. Results indicate that $SiO_2$ nano and micro $SiO_2$ particles are non-toxic to P. aerugineum Geitler up to a concentration of 1000 mg/L. In addition, $Al_2O_3$ microparticles are less toxic to P. aerugineum Geitler, whereas $Al_2O_3$ nanoparticles are found to be highly toxic at 1000 mg/L. Moreover, $Al_2O_3$ nanoparticles decrease the growth, chlorophyll content, and protein content of tested algae. In addition, zeta potential and contact angle are also important in enhancing the toxicity of metal oxide nanoparticles in aquatic environment. This study highlights a new insight into toxicity evaluation of nanoparticles on beneficial aquatic organisms such as algae.

Estimation of Antibacterial Properties of Chlorophyta, Rhodophyta and Haptophyta Microalgae Species

  • Imran Bashir, Khawaja Muhammad;Lee, Jae-Hyeon;Petermann, Maike Julia;Shah, Abid Ali;Jeong, Su-Jin;Kim, Moo-Sang;Park, Nam-Gyu;Cho, Man-Gi
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.225-233
    • /
    • 2018
  • In this exploratory study, eight types of microalgae from different phyla (Chlamydomonas reinhardtii, Chlorella species, Haematococcus pluvialis, Porphyridium purpureum, Porphyridium cruentum, Isochrysis species, Isochrysis galbana, and Pavlova lutheri) were tested for their antibacterial activities against eight target pathogenic bacterial strains. The agar well diffusion method and broth micro dilution assay were conducted to estimate the antibacterial activity. Microalgae cell-free supernatants, exopolysaccharides (EPS), water, and organic solvent extracts were used for inhibition analysis. EPS extracted from P. lutheri showed activity against Bacillus subtilis and Pseudomonas aeruginosa. Inhibition zone diameters of 14-20 mm were recorded on agar plates, while the minimum inhibitory concentrations in the broth micro dilution assay were $0.39-25mg\;ml^{-1}$. During this study, haptophyte microalgae, Isochrysis species, and P. lutheri extracts showed the highest activity against most of the tested pathogenic bacterial strains, while most of the extracts were active against the important foodborne pathogen P. aeruginosa. This study showed promising results regarding important microalgae phyla, which will further aid research related to extracts and exploitation of bioactive metabolic compounds in the food and pharmaceutical industries.

High-Density Cultivation of Microalgae using Microencapsulation (Microencapsulation에 의한 미세조류의 고밀도 배양)

  • HAN Young-Ho;LEE Jung-Suck;KWAK Jung-Ki;LEE Eung-Ho;CHO Man-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.2
    • /
    • pp.186-191
    • /
    • 1999
  • The three speices of miroalgae (Chlorella vulgaris, Dunaliella salina and Porphyridium purpureum) were immobilized in Ca-alginate capsules as a basic study for development of economic cultivation process, and then were cultivated in an air-bubble column bioreactor. Under the batch culture of aerobic conditions, the thickness of the capsule membrane and $CO_2$ supply did not affect the growth of the immobilized microalga, Chlorella vulgaris. Cell concentration of immobilized microalgae in the capsule was higher than those of imobilized microalgae in beads and free cells. The cell concentration of microencapsulated Dunaliella salina was greater about 5 times than that of free cells. Based on these results, it is concluded that the application of microencapsulation technology to the culture of microalgae was an effective method for high-density cultivation.

  • PDF

On the genus Rhodella, the emended orders Dixoniellales and Rhodellales with a new order Glaucosphaerales (Rhodellophyceae, Rhodophyta)

  • Scott, Joe;Yang, Eun-Chan;West, John A.;Yokoyama, Akiko;Kim, Hee-Jeong;De Goer, Susan Loiseaux;O'Kelly, Charles J.;Orlova, Evguenia;Kim, Su-Yeon;Park, Jeong-Kwang;Yoon, Hwan-Su
    • ALGAE
    • /
    • v.26 no.4
    • /
    • pp.277-288
    • /
    • 2011
  • The marine unicellular red algal genus Rhodella was established in 1970 by L. V. Evans with a single species R. maculata based on nuclear projections into the pyrenoid. Porphyridium violaceum was described by P. Kornmann in 1965 and transferred to Rhodella by W. Wehrmeyer in 1971 based on plastid features and the non-parietal position of the nucleus. Molecular and fine structural evidences have now revealed that Rhodella maculata and R. violacea are one species, so R. violacea has nomenclatural priority and the correct name is Rhodella violacea (Kornmann) Wehrmeyer. The status of families within Rhodellophyceae was examined. The order Dixoniellales and family Dixoniellaceae are emended to include only Dixoniella and Neorhodella. The order Rhodellales and family Rhodellaceae are emended to include Rhodella and Corynoplastis. Glaucosphaera vacuolata Korshikov and the Glaucosphaeraceae Skuja (1954) with an emended description are transferred to the Glaucosphaerales ord. nov.