Browse > Article
http://dx.doi.org/10.4014/mbl.1802.02015

Estimation of Antibacterial Properties of Chlorophyta, Rhodophyta and Haptophyta Microalgae Species  

Imran Bashir, Khawaja Muhammad (Department of Biotechnology, Division of Energy and Bioengineering, Dongseo University)
Lee, Jae-Hyeon (Department of Chemical and Biomolecular Engineering, Pusan National University)
Petermann, Maike Julia (Institute of Biotechnology, Technische Universitat Berlin)
Shah, Abid Ali (Department of Biotechnology, Division of Energy and Bioengineering, Dongseo University)
Jeong, Su-Jin (Department of Biotechnology, Division of Energy and Bioengineering, Dongseo University)
Kim, Moo-Sang (Department of Biotechnology, Division of Energy and Bioengineering, Dongseo University)
Park, Nam-Gyu (Department of Biotechnology, Pukyong National University)
Cho, Man-Gi (Department of Biotechnology, Division of Energy and Bioengineering, Dongseo University)
Publication Information
Microbiology and Biotechnology Letters / v.46, no.3, 2018 , pp. 225-233 More about this Journal
Abstract
In this exploratory study, eight types of microalgae from different phyla (Chlamydomonas reinhardtii, Chlorella species, Haematococcus pluvialis, Porphyridium purpureum, Porphyridium cruentum, Isochrysis species, Isochrysis galbana, and Pavlova lutheri) were tested for their antibacterial activities against eight target pathogenic bacterial strains. The agar well diffusion method and broth micro dilution assay were conducted to estimate the antibacterial activity. Microalgae cell-free supernatants, exopolysaccharides (EPS), water, and organic solvent extracts were used for inhibition analysis. EPS extracted from P. lutheri showed activity against Bacillus subtilis and Pseudomonas aeruginosa. Inhibition zone diameters of 14-20 mm were recorded on agar plates, while the minimum inhibitory concentrations in the broth micro dilution assay were $0.39-25mg\;ml^{-1}$. During this study, haptophyte microalgae, Isochrysis species, and P. lutheri extracts showed the highest activity against most of the tested pathogenic bacterial strains, while most of the extracts were active against the important foodborne pathogen P. aeruginosa. This study showed promising results regarding important microalgae phyla, which will further aid research related to extracts and exploitation of bioactive metabolic compounds in the food and pharmaceutical industries.
Keywords
Antibacterial activity; exopolysaccharides; microalgae extracts; natural compounds; pathogenic bacteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Volk RB. 2005. Screening of microbial culture media for the presence of algicidal compounds and isolation and identification of two bioactive metabolites, excreted by the cyanobacteria Nostoc insulare and Nodularia harveyana. J. Appl. Phycol. 17: 339-347.   DOI
2 de Morais MG, da Silva Vaz B, de Morais EG, Costa JAV. 2015. Biologically active metabolites synthesized by microalgae. BioMed Res. Int. 2015: 1-15. http://dx.doi.org/10.1155/2015/835761.   DOI
3 Pratt R, Daniels TC, Eiler JJ, Gunnison JB, Kumler WD, Oneto JF, et al. 1944. Chlorellin, an antibacterial substance from Chlorella. Science 99: 351-352.   DOI
4 Desbois AP, Mearns-Spragg A, Smith VJ. 2009. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. (NY) 11: 45-52.   DOI
5 Pedersén M, DaSilva EJ. 1973. Simple brominated phenols in the bluegreen alga Calothrix bravissima West. Planta 115: 83-86.   DOI
6 Volk RB. 2007. Studies on culture age versus exometabolite pro- duction in batch cultures of the cyanobacterium Nostoc insulare. J. Appl. Phycol. 19: 491-495.   DOI
7 Volk RB, Furkert F. 2006. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiol. Res. 161: 180-186.   DOI
8 Caicedo NH, Kumirska J, Neumann J, Stolte S, Thöming J. 2012. Detection of bioactive exometabolites produced by filamentous marine Cyanobacterium Geitlerinema sp. Mar. Biotechnol. (NY) 14: 436-445.   DOI
9 Stolz P, Obermayer B. 2005. Manufacturing microalgae for skin care. Cosmetics Toiletries. 120: 99-106.
10 Spolaore P, Joannis-Cassan C, Duran E, Isambert A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96.   DOI
11 Najdenski HM, Gigova LG, Ilive II, Pilarski PS, Lukavsk J, Tsvetkova IV, et al. 2013. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int. J. Food. Sci. Technol. 48: 1533-1540.   DOI
12 Smith VJ, Desbois AP, Dyrynda EA. 2010. Conventional and unconventional antimicrobials from fish, marine invertebrates and microalgae. Mar. Drugs. 8: 1213-1262.   DOI
13 Santoyo S, Rodriguez-Meizoso I, Cifuentes A, Jaime L, Reina GGB, Senorans FJ, et al. 2009. Green processes based on the extraction with pressurized fluids to obtain potent antimicrobials from Haematococcus pluvialis microalgae. LWT - Food Sci. Technol. 42: 1213-1218.   DOI
14 Das BK, Pradhan J, Pattnaik P, Samantaray BR, Samal SK. 2005. Production of antibacterials from the freshwater alga Euglena viridis (Ehren). World J. Microb. Biotech. 21: 45-50.   DOI
15 Gorman DS, Levine RP. 1965. Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 54: 1665-1669.   DOI
16 Ghasemi Y, Moradian A, Mohagheghzadeh A, Shokravi S, Morowvat MH. 2007. Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus dispersus. J. Biol. Sci. 7: 904-910.   DOI
17 Capita R, Alonso-Calleja C. 2013. Antibiotic-resistant bacteria: a challenge for the food industry. Crit. Rev. Food Sci. Nutr. 53: 11-48.   DOI
18 Chu WL. 2011. Potential applications of antioxidant compounds derived from algae. Curr. Top. Nutraceut. Res. 9: 83-98.
19 Chu WL. 2012. Biotechnological applications of microalgae. IeJSME. 6: 24-37.
20 Starr RC, Zeikus JA. 1993. UTEX - The culture collection of algae at the University of Texas at Austin. J. Phycol. 29: 1-106.   DOI
21 Andersen RA, Berges JA, Harrison PJ, Watanabe MM. 2005. Recipes for freshwater and seawater media, pp. 429-538. In Andersen RA (ed.), Algal culturing techniques, 1st Ed. Elsevier, Amsterdam, Netherlands.
22 Bashir KMI, Cho M-G. 2016. The effect of kanamycin and tetracy- cline on growth and photosynthetic activity of two chlorophyte algae. BioMed Res. Intl. 2016: 5656304.
23 DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350-356.   DOI
24 Spooner FD, Sykes G. 1972. Laboratory assessment of antibacterial activity, pp. 211-276. In Norris JR, Ribbons DW (eds.), Methods in Microbiology, Academic Press, London.
25 Andrews JM. 2001. Determination of minimal inhibitory concentrations. J. Antimicrob. Chemother. 48: 5-16.   DOI
26 Raposo MFJ, Morais AMSC, Morais RMSC. 2014. Influence of sulphate on the composition and antibacterial and antiviral properties of the exopolysaccharide from Porphyridium cruentum. Life Sci. 101: 56-63.   DOI
27 Scorzoni L, Benaducci T, Almeida AMF, Silva DHS, Bolzani VS, Mendes-Giannini MJS. 2007. Comparative study of disk diffusion and microdilution methods for evaluation of antifungal activity of natural compounds against medical yeasts Candida spp. and Cryptococcus sp. J. Basic Appl. Pharm. Sci. 28: 25-34.
28 Raposo MFJ, Morais RMSC, Morais AMMB. 2013a. Bioactivity and applications of sulphated polysaccharides from marine microalgae. Mar. Drugs. 11: 233-252.   DOI
29 Raposo MFJ, Morais RMSC, Morais AMMB. 2013b. Health applications of bioactive compounds from marine microalgae. Life Sci. 93: 479-486.   DOI
30 Li L-Y, Li L-Q, Guo C-H. 2010. Evaluation of in vitro antioxidant and antibacterial activities of Laminaria japonica polysaccharides. J. Med. Plants Res. 4: 2194-2198.
31 Bernal P, Llamas MA. 2012. Promising biotechnological applications of antibiofilm exopolysaccharides. Microb. Biotechnol. 5: 670-673.   DOI
32 Rendueles O, Kaplan JB, Ghigo JM. 2012. Antibiofilm polysaccharides. Environ. Microbiol. 15: 334-346.
33 Medina-Jaritz NB, Carmona-Ugalde LF, Lopez-Cedillo JC, Ruiloba-De Leon FSL. 2013. Antibacterial activity of methanolic extracts from Dunaliella salina and Chlorella vulgaris. FASEB J. 27: 1167-1175.   DOI
34 Salem OMA, Hoballah EM, Ghazi SM, Hanna SN. 2014. Antimicrobial activity of microalgal extracts with special emphasize on Nostoc sp. Life Sci. J. 11: 752-758.
35 Mimoun V, Ulmann L, Pasquet V, Mathieu M, Picot L, Bougaran G, et al. 2012. The potential of microalgae for the production of bioactive molecules of pharmaceutical interest. Curr. Pharm. Biotechnol. 13: 2733-2750.   DOI
36 Amaro HM, Guedes AC, Malcata FX. 2011. Antimicrobial activi- ties of microalgae: an invited review. pp. 1272-1280. In Mendez-Vilas A (ed.), Sieve against microbial pathogens: communicating current research and technological advances. FORMATEX Microbiology Series 1, Badajoz, Spain.