• Title/Summary/Keyword: Porous sandstone

Search Result 11, Processing Time 0.026 seconds

Seismic wave monitoring of $CO_2$ migration in water-saturated porous sandstone

  • Xue Ziqiu;Ohsumi Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.25-32
    • /
    • 2004
  • We have carried out laboratory measurements of P-wave velocity and deformation strain during $CO_2$ injection into a porous sandstone sample, in dry and water-saturated conditions. The rock sample was cylindrical, with the axis normal to the bedding plane, and fluid injection was performed from one end. Using a piezoelectric transducer array system, we mapped fluid movement during injection of distilled water into dry sandstone, and of gaseous, liquid, and supercritical $CO_2$ into a water-saturated sample. The velocity changes caused by water injection ranged from $5.61\;to\;7.52\%$. The velocity changes caused by $CO_2$ injection are typically about $-6\%$, and about $-10\%$ for injection of supercritical $CO_2$, Such changes in velocity show that the seismic method may be useful in mapping $CO_2$ movement in the subsurface. Strain normal to the bedding plane was greater than strain parallel to the bedding plane during $CO_2$ injection; injection of supercritical $CO_2$ showed a particularly strong effect. Strain changes suggest the possibility of monitoring rock mass deformation by using borehole tiltmeters at geological sequestration sites. We also found differences associated with $CO_2$ phases in velocity and strain changes during injection.

Evaluation of Pore Size Distribution of Berea Sandstone using X-ray Computed Tomography (X-ray CT를 이용한 베레아 사암의 공극크기분포 산정)

  • Kim, Kwang Yeom;Kim, Kyeongmin
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.353-362
    • /
    • 2014
  • Pore structures in porous rock play an important role in hydraulic & mechanical behaviour of rock. Porosity, size distribution and orientation of pores represent the characteristics of pore structures of porous rock. While effective porosity can be measured easily by conventional experiment, pore size distribution is hard to be quantified due to the lack of corresponding experiment. We assessed pore size distribution of Berea sandstone using X-ray CT image based analysis combined with associated images processing, i.e., image filtering, binarization and skeletonization subsequently followed by the assessment of local thickness and star chord length. The aim of this study is to propose a new and effective way to evaluate pore structures of porous rock using X-ray CT based analysis for pore size distribution.

A Suggested Method for Predicting Permeability of Porous Sandstone Using Porosity and Drying Rate (공극률과 건조율을 이용한 다공질 사암의 투과도 추정방법 제안)

  • Ko, Eunji;Kim, Jinhoo
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.3
    • /
    • pp.121-128
    • /
    • 2014
  • As the permeability is an important parameter to characterize the ease with which a porous medium transmits fluids, it is usually obtained by fluid flow experiment using core samples. In order to measure the permeability, however, an experimental apparatus is required and it might take long measurement time, especially for tight samples. In this study, the relationship between permeability and porosity as well as drying rate has been investigated to predict the permeability without a series of measuring experiments. Porosity is measured by drying monitoring method, which measures weight variation continuously while drying surface-dried saturated sample, and drying rate is obtained from weight variation ratio with respect to the water saturation. The total of 6 Berea sandstone samples, which have a permeability range of 70 to 670 mD, were used in this work, and a new and empirical equation which could predict permeability of porous sandstone by using porosity and drying rate were obtained through regression analysis.

A Study of Locally Changing Pore Characteristics and Hydraulic Anisotropy due to Bedding of Porous Sandstone (다공질 사암의 층리에 따른 국부적 공극특성 변화와 수리 이방성 특성)

  • Yang, Hwa-Young;Kim, Hanna;Kim, Kyeongmin;Kim, Kwang Yeom;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.23 no.3
    • /
    • pp.228-240
    • /
    • 2013
  • Anisotropy observed in sedimentary rock such as sandstone is mainly caused by existence of bedding consequently influencing on its hydraulic characteristics. The aim of this study is to investigate the influence of locally changing pore structure due to bedding on the hydraulic anisotropy of sandstone, in terms of localized porosity. X-ray CT scan is applied to observe the internal pore structures which is hard to be seen by other experimental methods. Permeability test is also conducted for samples cored at every $15^{\circ}$ from $0^{\circ}$ to $90^{\circ}$ with respect to bedding plane. As a result, the permeability anisotropy is manifest having 1.8 of anisotropy ratio ($k_{90^{\circ}}/k_{0^{\circ}}$) and corresponds with the anisotropy of porosity due to bedding.

Development of Experimental Apparatus for Carbon Dioxide Geological Storage (이산화탄소 지중저장을 위한 실내 모사실험 장치 개발)

  • Park, Sam-Gyu;Cho, Seung-Jun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.141-144
    • /
    • 2008
  • Geological storage of carbon dioxide has been studying in advanced countries to reduce greenhouse gases and a pilot site for geological storage is also in operation in the deep saline aquifer. Seismic wave and electrical resistivity tomography methods are applicable to monitoring techniques and they are used to evaluate the distribution range and behavior of the carbon dioxide injected in the porous sandstone formations. This paper describes the construction of an experimental apparatus which consists of a high pressure vessel and a measurement system for geological storage of carbon dioxide. The experiment apparatus will be used to measure seismic velocities and resistivities during the injection of carbon dioxide at the supercritical phase in the porous sandstones.

  • PDF

Laboratory study of $CO_2$ migration in water-saturated anisotropic sandstone, based on P-wave velocity imaging (P-파 속도 영상화에 근거한 물로 포화된 이방성 사암에서의 $CO_2$ 이동에 관한 실험 연구)

  • Xue, Ziqiu;Lei, Xinglin
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.10-18
    • /
    • 2006
  • We measured the changes in P-wave velocity that occur when injecting $CO_2$ in gaseous, liquid, and supercritical phases into water-saturated anisotropic sandstones. P-wave velocities were measured in two cylindrical samples of Tako Sandstone, drilled along directions normal and parallel to the bedding plane, using a piezo-electric transducer array system. The velocity changes caused by $CO_2$ injection are typically -6% on average, with maximum values about -16% for the case of supercritical $CO_2$ injection. P-wave velocity tomograms obtained by the differential arrival-time method clearly show that $CO_2$ migration behaviour is more complex when $CO_2$ flows normal to the bedding plane than when it flows parallel to bedding. We also found that the differences in P-wave velocity images were associated both with the $CO_2$ phases and with heterogeneity of pore distribution in the rocks. Seismic images showed that the highest velocity reduction occurred for supercritical $CO_2$ injection, compared with gaseous or liquid $CO_$ injection. This result may justify the use of the seismic method for $CO_2$ monitoring in geological sequestration.

Development of Alkoxysilane Mixed Solution as Stone Preservation and Consolidation Materials (알콕시 실란계 석재 보존 및 강화제 개발)

  • Kim, Eun-Kyung;Park, Seong-Yong;Cho, Hyun-Dong;Won, Jong-Ok;Do, Jin-Young;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.21
    • /
    • pp.21-32
    • /
    • 2007
  • Low-viscosity alkoxysilanes that polymerize into the porous network of decayed stone by a sol-gel process are widely used as stone consolidants. During drying, the gel network contracts due to capillary pressure generated by solvent evaporation. We have prepared tetraethoxysilane mixed solution containing methyltrisilane, ethyl trisilane and (3-glycidyloxypropyl)trimethoxysilane having epoxy ring in order to reduce the shrinkage happened inside the stone porous structure during the gel formation. Mixed solutions were applied into sandstone and granites and characterized by FT-IR, SEM. The gelation time, water uptake, contact angles were measured and compared with those of the commercial stone conservation materials.

  • PDF

3-Dimensional ${\mu}m$-Scale Pore Structures of Porous Earth Materials: NMR Micro-imaging Study (지구물질의 마이크로미터 단위의 삼차원 공극 구조 규명: 핵자기공명 현미영상 연구)

  • Lee, Bum-Han;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2009
  • We explore the effect of particle shape and size on 3-dimensional (3D) network and pore structure of porous earth materials composed of glass beads and silica gel using NMR micro-imaging in order to gain better insights into relationship between structure and the corresponding hydrologic and seismological properties. The 3D micro-imaging data for the model porous networks show that the specific surface area, porosity, and permeability range from 2.5 to $9.6\;mm^2/mm^3$, from 0.21 to 0.38, and from 11.6 to 892.3 D (Darcy), respectively, which are typical values for unconsolidated sands. The relationships among specific surface area, porosity, and permeability of the porous media are relatively well explained with the Kozeny equation. Cube counting fractal dimension analysis shows that fractal dimension increases from ~2.5-2.6 to 3.0 with increasing specific surface area from 2.5 to $9.6\;mm^2/mm^3$, with the data also suggesting the effect of porosity. Specific surface area, porosity, permeability, and cube counting fractal dimension for the natural mongolian sandstone are $0.33\;mm^2/mm^3$, 0.017, 30.9 mD, and 1.59, respectively. The current results highlight that NMR micro-imaging, together with detailed statistical analyses can be useful to characterize 3D pore structures of various porous earth materials and be potentially effective in accounting for transport properties and seismic wave velocity and attenuation of diverse porous media in earth crust and interiors.

Weathering of Rock Specimens Exposed to Recurrent Freezing and Thawing Cycles (동결-융해 풍화에 의한 암석 물성 변화 양상과 추정에 관한 연구)

  • Ryu, Sung-Hoon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.276-283
    • /
    • 2012
  • Changes in rock properties due to freezing and thawing cycles ranging from $-20^{\circ}C$ to $10^{\circ}C$ were checked for the typical Korean rocks: granite (weathered), limestone, sandstone, tuff, shale and basalt. The porosity, seismic velocity, shore hardness and specific gravity were measured every 10 cycles for each type of rock up to 40 cycles. The specific gravity was rarely changed. Granite (w), shale and basalt decreased gradually in their shore hardness and seismic velocity values, these values for limestone, sandstone and tuff changed only a very little. The porosity increased in the granite (w), shale and basalt, whereas in the others it did not change. Due to the low tensile strength with high porosity, granite (w), shale and basalt were susceptible to the F-T cycles. A linear regression equation was calculated based on the experiment results according to properties and types of rock. The relationship between the freeze-thaw sensitivity (=initial porosity/initial tensile strength) and the coefficients of the regression equation was examined. With additional experimental data, the coefficients of the regression equation can be estimated using the F-T sensitivity. This makes it possible to predict the properties of rock as affected by freeze-thaw weathering by only measuring the initial properties without knowledge of the regression equation coefficients for each type of rock.

Damage Characteristics of Rocks by Uniaxial Compression and Cyclic Loading-Unloading Test (일축압축시험과 반복재하시험을 이용한 암석의 손상특성 분석)

  • Jeong, Gyn-Young;Jang, Hyun-Sic;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.31 no.2
    • /
    • pp.149-163
    • /
    • 2021
  • Damage characteristics of granite, marble and sandstone whose properties were different were investigated by uniaxial compression test and cyclic loading-unloading test. Strength, elastic constants and damage threshold stresses were measured by uniaxial compression test and were compared with those measured by cyclic loading-unloading test. Average rock strengths measured by cyclic loading-unloading test were either lower than or similar with those measured by uniaxial compression test. Rocks with high strength and low porosity were more sensitive to fatigue than that with low strength and high porosity. Although permanent strains caused by cyclic loading-unloading were different according to rock types, they could be good indicators representing damage characteristics of rock. Damage threshold stress of granite and marble might be measured from stress-permanent strain curves. Acoustic emissions were measured during both tests and felicity ratios which represented damage characteristics of rocks were calculated. Felicity ratio of sandstone which was weak in strength and highly porous could not be calculated because of very few measurements of acoustic emissions. On the other hand, damage threshold could be predicted from felicity ratios of granite and marble which were brittle and low in porosity. The deformation behaviors and damage characteristics of rock mass could be investigated if additional tests for various rock types were performed.